• Title/Summary/Keyword: Pulse height spectrum

Search Result 22, Processing Time 0.02 seconds

A new approach for modeling pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of NPP accident

  • R.I. Bakin;A.A. Kiselev;E.A. Ilichev;A.M. Shvedov
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4715-4721
    • /
    • 2022
  • A comprehensive approach for modeling the pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of accident at NPP has been developed. It involves modeling the transport of radionuclides in the atmosphere using Lagrangian stochastic model, WRF meteorological processor with an ARW core and GFS data to obtain spatial distribution of radionuclides in the air at a given moment of time. Applying representation of the cloud as superposition of elementary sources of gamma radiation the pulse height spectra are calculated based on data on flux density from point isotropic sources and detector response function. The proposed approach allows us to obtain time-dependent spectra for any complex radionuclide composition of the release. The results of modeling the pulse height spectra of the scintillator detector NaI(Tl) Ø63×63 mm for a hypothetical severe accident at a NPP are presented.

Characteristics on the Breakdown and Frequency Spectrum of High Power Microwave Pulse Propagating through the Atmosphere (고출력 마이크로파 펄스의 대기권 전파시 방전 및 주파수 스펙트럼에 관한 특성)

  • Kim, Yeong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.591-597
    • /
    • 1999
  • The propagation characteristics of high power microwave pulse in an air-breakdown environment are examined. The maximum electron density produced by microwave air-breakdown is limited to $10^6cm^{-3}$ by the tail-erosion effect. Inorder to increase the electron density, the scheme using two pulses intersecting at a desired height is considered. Increasing the carrier frequency, it is shown that microwave pulse can be transferred without the serious erosion in the numerical simulation. This result is useful for the above scheme. Also, an experiment is conducted to show the tail-erosion effect and confirm that a rapidly generated lossy plasma can cause spectral breaking and frequency shift of a high-power microwave pulse. The experimental results are presented by comparing the frequency spectrum of an incident pulse with that of the pulse transmitted through a self-induced air-breakdown environment. The experimental results show that the amount of frequency upshift is co-related with the ionization rate, whereas that of frequency downshift is correlated with the energy losses from the pulse in the self-generated plasma.

  • PDF

A Study on the Characteristic of the $^6Li$ Neutron Spectrometer ($^6Li$ 중성자분광계 특성 연구)

  • Choe, Seong-Ho;Kang, Sam-Woo;Lee, Kwang-Pill;Lee, Kyung-Ju;Hwang, Sun-Tae
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.57-61
    • /
    • 1992
  • For the neutron spectrum measurement, $^6Li$ neutron spectrometer system is installed. The characteristic of the $^6Li$ detector are investigated using a $^{137}Cs$ and $^{207}Bi$ point source, and the neutron capture peaks and the pulse height spectrum using an $^{214}Am-Be$ neutron source are measured. Furthermore, the pulse height spectrum for the irradiation time variation from the (214)^Am-Be neutron source, and for the distance variation between detector and source, and the threshold variation of discriminator are measured.

  • PDF

A Study on the Relationship between Aging and Partial Discharge Characteristics of the Mica/Epoxy Composite Insulation Systems (l) (Mica/Epoxy 복합 절연계통의 부분방전 특성과 열화 관계에 관한 연구(I))

  • Kang, D.S.;Lee, W.Y.;Park, C.H.;Kwak, Y.S.;Kim, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.976-979
    • /
    • 1992
  • There are lots of problem which are delaminations and partial discharge of insulation materials in high-voltage rotating machines caused by mechanical, electrical and thermal aging. Several experiments have been aiming at finding the useful diagnostic parameters from the partial discharge characteristics by applying a new measurement techniques. This paper deals with the partial discharge characteristics (pulse height, pulse angle, pulse frequency spectrum and time interval), which may be a useful diagnostic concept in predicting insulation condition of mica/epoxy composite insulation materials, by using several measurement equipments (frequency spectrum analyzer. multichannel analyzer and time interval analyzer).

  • PDF

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

Development of the pulse analyzing system using FBG (FBG를 이용한 맥진 시스템 개발)

  • Jeon, Young-Ju;Lee, Jeon;Ryu, Hyun-Hee;Lee, Jae-Hoon;Lee, Si-Woo;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • This work reports the pulse diagnosis system using FBG sensors which can display pulse signals detected while oriental medical doctors are conducting pulse diagnoses and simultaneously pressing the sensors by three fingers. Each optical fiber has five FBG sensing units fabricated in 2 mm width and 2 mm inter-sensor spacing. Three optical fibers with the FBG units in the parallel line configuration are then placed on each finger-pressing region and thus overall 9 fibers are used for the pulse measurements on the so-called "chon", "gwan", and "ch대k". A fixture holding the optical fiber arrays is able to adjust the height of the FBG sensing units while placing the fibers on the wrist. The pulse signals detected by the FBG sensors from chon, kwan, and chuk have been analyzed using 4 channel spectrum analyzer connected to the optical fibers. The measured pulse signals exhibit variations due to the nonuniform pressure distributions applied. resulting in the differences in the detected pulse signals between fiber lines. However. this work is the first step towards objective and quantitative analyses of the pulse diagnosis in oriental medicine which has traditionally been performed on subjective basis. Future works will be devoted to improving sensor stability, developing the way applying pressure and algorithms reporting the objective classification of the pulse status from systemic measurements using the sensors instead of relying on the clinicians' diagnoses subjectively performed. A successful pulse diagnosis system emerging in the future is expected to contribute to education as well as promoting pulse diagnosis in oriental medicine to the scientific research area.

  • PDF

Automatic Determination of the Energy Pulse-height Relationship in NaI(TI) Spectra (NaI(T1) 검출기 스펙트럼의 에너지-채널 관계 자동결정)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.143-151
    • /
    • 1997
  • As the pulse heights from a NaI(Tl) detector vary with the temperature of the measuring environment a significant change in temperature may affect the energy calibration of the spectrometer. The auto-adjustment of the channel corresponding to a pulse heights can be achieved by introducing an external reference source to compensate the temperature dependency of pulse heights, but unfavorable increases of the Compton continuum are caused due to the external source. In this study, the total absorption peaks dominant in the typical environmental gamma spectrum-239 keV from $^{212}Pb$, 351 keV from $^{214}Pb$, 1460 keV from $^{40}K$ and 2614 keV from $^{208}Tl$ for examples - were used as reference in the correction of energy calibration. With these peaks, the program to calibrate the energy of the s spectrum was developed using Microsoft Visual Basic language. The program developed here was applied to the environmental spectra measured at intervals of 30 minutes in the temperature range of from $-20^{\circ}C$ to $10^{\circ}C$ to demonstrate the validity and applicability. As a result of the test, the correction scheme appeared to be effective in the temperature changes encountered in the usual environment.

  • PDF

Dosimetrical Analysis of Reactor Leakage Gamma-rays by Means of Scintillation Spectrometry

  • Jun, Jae-Shik
    • Nuclear Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.291-309
    • /
    • 1973
  • Exposure rates due to leakage gamma-rays from operating reactors TRIGA Mark II and III were measured in a horizontal plane by means of scintillation spectrometry using a 3"$\times$3" cylindrical Nal(T1) detector associated with a 400 channel pulse height analyzer under varied conditions of reactor operation. In determining exposure rate due to the leakage gamma-rays at each point of measurement, Moriuchi's spectrum-exposure rate conversion theory was applied instead of using conventional responce matrix method which necessitates very complicated procedures to convert a spectrum into exposure rate. The results show that a basic pattern of "typical" spectrum of the reactor leakage gamma-rays is neither affected by thermal output of the reactor, nor influenced by overall attenuation in radiation intensity. It was indicated that he attenuation of the leakage gamma-rays in air in terms of exposure rate as a whole follows an exponential law, and the total exposure rate due to the leakage gamma-rays at a certain point is nearly proportional to thermal output of the reactor. The complexity in spectrum measured for a movable core reactor, TRIGA Mark III, was analyzed through spectrum resolution, and proper judgement of the leakage gamma-rays in a complex spectrum was discussed.ctrum was discussed.

  • PDF

Multi-channel analyzer based on a novel pulse fitting analysis method

  • Wang, Qingshan;Zhang, Xiongjie;Meng, Xiangting;Wang, Bao;Wang, Dongyang;Zhou, Pengfei;Wang, Renbo;Tang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2023-2030
    • /
    • 2022
  • A novel pulse fitting analysis (PFA) method is presented for the acquisition of nuclear spectra. The charging process of the feedback capacitor in the resistive feedback charge-sensitive preamplifier is equivalent to the impulsive pulse, and its impulse response function (IRF) can be obtained by non-linear fitting of the falling edge of the nuclear pulse. The integral of the IRF excluding the baseline represents the energy deposition of the particles in the detector. In addition, since the non-linear fitting process in PFA method is difficult to achieve in the conventional architecture of spectroscopy system, a new multi-channel analyzer (MCA) based on Zynq SoC is proposed, which transmits all the data of nuclear pulses from the programmable logic (PL) to the processing system (PS) by high-speed AXI-Stream in order to implement PFA method with precision. The linearity of new MCA has been tested. The spectrum of 137Cs was obtained using LaBr3(Ce) scintillator detector, and was compared with commercial MCA by ORTEC. The results of tests indicate that the MCA based on PFA method has the same performance as the commercial MCA based on pulse height analysis (PHA) method and excellent linearity for γ-rays with different energies, which infers that PFA method is an effective and promising method for the acquisition of spectra. Furthermore, it provides a new solution for nuclear pulse processing algorithms involving regression and iterative processes.