• Title/Summary/Keyword: Pulse amplitude

Search Result 497, Processing Time 0.032 seconds

Modulated Pulse Power Sputtering Technology for Deposition of Al Doped ZnO Thin Film (Al doped ZnO 박막 증착을 위한 모듈레이티드 펄스 스퍼터링)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.2
    • /
    • pp.53-60
    • /
    • 2012
  • Modulated Pulse Power (MPP) magnetron sputtering is a new high-power pulsed magnetron sputtering (HPPMS) technology which overcomes the low deposition rate problem by modulating the pulse voltage shape, amplitude, and the duration. Highly ionized magnetron sputtering can be performed without arcing because it can be controlled as multiple steps of micro pulses within one overall pulse period in the range of 500-3,000 ${\mu}s$. In this study, the various waveforms of discharge voltage and current for micro pulse sets of MPP were investigated to find the possibility of controlling the strongly ionized plasma mode. Enhanced ionization of the sputtered metal atoms was obtained by OES. Large grained columnar structure can be grown by the strongly ionized plasma mode in the AZO deposition using MPP. In the most highly ionized deposition condition, the preferred orientation of (002) plane decreased, and the resistivity, therefore, increased by the plasma damage.

Development of Evaluation Method of External Tendon Force by Using the Deriving Ultrasonic Pulse (유도초음파를 이용한 외부 강선의 긴장력 평가기법 개발)

  • Park, Seung-Bum;Hong, Sung-Su;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2007
  • In domestic case, there are no results of corresponding researches for measuring external tendon force. The purpose of the present paper is therefore to measure external tendon force by using deriving ultrasonic method. For this purpose, we designed and manufactured wedges and test system, and measured ultrasonic pulse velocity and pulse amplitude. By using measured data, we tried to analyze the characteristics of tendon force, and to derive the relationship between tendon force and ultrasonic pulse velocity, finally to develop the technic of measuring system using ultrasonic pulse velocity. So tendon force-velocity relationship was proposed by equations, and those equations of which errors were 3.92~8.77% will be possible to adapt in-site.

Pulse pile-up correction by auto-regression on linear operations (ARLO) method: A comparison with integration-based algorithms

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3904-3913
    • /
    • 2024
  • Radiation detection at high count rate suffers from pulse pile-up, where the counting data and energy information of the system are affected by the overlapping of the system output pulses. There exist various pile-up correction strategies to recover the true information of the pulses, among which pulse-tail extrapolation is a well-known method focused on in this study. Present work aims to use a mono-exponential model for extrapolating the pileup-distorted trailing edge of a pulse, to provide a reference line for calculating the true amplitude of its subsequent overlapping pulse. To this goal, the auto-regression on linear operations (ARLO) method is examined and compared with two integration-based methods (the Foss and the Matheson methods), as well as the non-linear least squares (NLS) method. Despite a higher sensitivity to noise, the ARLO method was able to provide a simple, non-iterative solution with a performance over 400 times faster than the NLS algorithm, according to the analysis of a high count rate set of experimental pulses from a NaI(Tl) detection system. Foss and Matheson methods also provided solutions reasonably faster than NLS (but not surpassing ARLO), performing exactly the same as each other with results very close to NLS, benefiting from their non-iterative nature.

A Study on Malfunction Mode and Failure Rate Properties of Semiconductor by Impact of Pulse Repetition Rate (펄스 반복률에 의한 반도체 소자의 오동작 모드와 고장률에 관한 연구)

  • Park, Ki-Hoon;Bang, Jeong-Ju;Kim, Ruck-Woan;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.6
    • /
    • pp.360-364
    • /
    • 2015
  • Electronic systems based on solid state devices have changed to be more complicated and miniaturized as the electronic systems developed. If the electronic systems are exposed to HPEM (high power electromagnetics), the systems will be destroyed by the coupling effects of electromagnetic waves. Because the HPEM has fast rise time and high voltage of the pulse, the semiconductors are vulnerable to external stress factor such as the coupled electromagnetic pulse. Therefore, we will discuss about malfunction behavior and DFR (destruction failure rate) of the semiconductor caused by amplitude and repetition rate of the pulse. For this experiment, the pulses were injected into the pins of general purpose IC due to the fact that pulse injection test enables the phenomenon after the HPEM is coupled to power cables. These pulses were produced by pulse generator and their characteristics are 2.1 [ns] of pulse width, 1.1 [ns] of pulse rise time and 30, 60, 120 [Hz] of pulse repetition rate. The injected pulses have changed frequency, period and duty ratio of output generated by Timer IC. Also, as the pulse repetition rate increases the breakdown threshold point of the timer IC was reduced.

Effect of Laser Acupuncture on Arterial Pulse

  • Cho, Jaekyong;Kang, Dong Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.191-197
    • /
    • 2015
  • Laser acupuncture is defined as the stimulation of traditional acupuncture points with low-intensity, nonthermal laser irradiation. Possible advantages in using laser acupuncture are the noninvasive, painless and low risks of infection treatment. The purpose of this study is to assess the effect of laser acupuncture on the quality and waveform of arterial pulses. Ten acupuncture points were stimulated repeatedly three times in 30 individuals by laser with emission in the near infrared spectral region (808 nm) using an out power and power density of 45 mW and $143W/cm^2$. The analysis of pulse quality and waveform was performed based on the measurement of arterial pressure of the left and right wrist, using a 3-dimensional blood pressure pulse analyzer. Excess-like pulse quality of subjects before laser acupuncture changed significantly to balanced pulse quality after 10, 20, and 30 minutes of laser acupuncture; coefficient of deficient or excess, $C_{DE}$, decreased significantly from 0.68 before acupuncture to 0.61, 0.55, and 0.55 after 10, 20, 30 minutes of laser acupuncture ($$p{\leq_-}0.006$$), respectively. Other pulse qualities, floating or sinking, slow or rapid, choppy or slippery did not change significantly by laser acupuncture (p > 0.05). Pulse waveform analysis showed that amplitude of main peak (systolic function or aortic compliance, $h_1$) of left and right artery pulse waves decreased significantly after 10, 20, and 30 minutes of laser acupuncture (p < 0.05). Other parameters, duration of one cardiac cycle (T), duration of rapid systolic ejection ($T_1$), duration of the systolic phase ($T_4$), and duration of the diastolic phase ($T_5$) of left and right artery pulses did not change significantly after laser acupuncture (p > 0.05).

Relationship of Inyoung-Chongu Pulse, BMI and Sasang Constitution Using Pulse Diagnosis Device (맥진기를 이용한 인영촌구맥과 체질량지수 및 사상체질간의 관계연구)

  • Song, Min-Sun;Park, Hye-Sun;Kim, Oh-Young;Kim, Byung-Soo;Yang, Dong-Hyuk;Choi, Chan-Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.339-344
    • /
    • 2011
  • The purpose of this study was to evaluate the relationship of Inyoung-Chongu pulse, body mass index (BMI) and Sasang constitution using pulse diagnosis device in college women. We measured the amplitude of Inyoung pulse, Chongu pulse, ratio of Inyoung to Chongu and ratio of Chongu to Inyoung on 69 college women. The data was analyzed by ANOVA and Pearson's correlation coefficient using SAS program. The results were as follow. There was no significant difference in Inyoung pulse, Chongu pulse, Inyoung to Chongu ratio and Chongu to Inyoung ratio according to BMI and Sasang constitution. There was significant difference in BMI among Sasang constitution. BMI was significantly high in Taeeumin than in Soyangin and Soeumin. We concluded that there was no relation among Inyoung-Chongu pulse, BMI and Sasang constitution. Therefore, we need to expand the sample size for in depth study.

Pulse pileup correction method for gamma-ray spectroscopy in high radiation fields

  • Lee, Minju;Lee, Daehee;Ko, Eunbie;Park, Kyeongjin;Kim, Junhyuk;Ko, Kilyoung;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1029-1035
    • /
    • 2020
  • The detector suffers from pulse pileup by overlapping of the signals when it was used in high radiation fields. The pulse pileup deteriorates the energy spectrum and causes count losses due to random co-incidences, which might not resolve within the resolving time of the detection system. In this study, it is aimed to propose a new pulse pileup correction method. The proposed method is to correct the start point of the pileup pulse. The parameters are obtained from the fitted exponential curve using the peak point of the previous pulse and the start point of the pileup pulse. The amplitude at the corrected start point of the pileup pulse can be estimated by the peak time of the pileup pulse. The system is composed of a NaI (Tl) scintillation crystal, a photomultiplier tube, and an oscilloscope. A 61 μCi 137Cs check-source was placed at a distance of 3 cm, 5 cm, and 10 cm, respectively. The gamma energy spectra for the radioisotope of 137Cs were obtained to verify the proposed method. As a result, the correction of the pulse pileup through the proposed method shows a remarkable improvement of FWHM at 662 keV by 29, 39, and 7%, respectively.

An Improved Wavelet PWM Technique with Output Voltage Amplitude Control for Single-phase Inverters

  • Zheng, Chun-Fang;Zhang, Bo;Qiu, Dong-Yuan;Zhang, Xiao-Hui;Li, Rui
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1407-1414
    • /
    • 2016
  • Unlike existing pulse-width modulation (PWM) techniques, such as sinusoidal PWM and random PWM, the wavelet PWM (WPWM) technique based on a Harr wavelet function can achieve a high fundamental component for the output voltage, low total harmonic distortion, and simple digital implementation. However, the original WPWM method lacks output voltage control. Thus, the practical application of the WPWM technique is limited. This study proposes an improved WPWM technique that can regulate output voltage amplitude with the addition of a parameter. The relationship between the additional parameter and the output voltage amplitude is analyzed in detail. Experimental results verify that the improved WPWM exhibits output voltage control in addition to all the merits of the WPWM technique.

A Fiber Optic Sensor for Measurements of Solute Concentration in Fluids

  • Kim, Chang-Bong;Su, C.B.
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.102-105
    • /
    • 2003
  • A new and simple calibration technique that greatly enhances the measurement sensitivity of conventional fiber-optic reflectometry based on Fresnel reflection from the tip of a fiber is used for demonstrating the feasibility of measuring solute concentrations and index changes in fluids to very high precision. The amplitude of pulses originating from reflection from the fiber-fluid interface is compared in real-time with the amplitude of reference pulses from a fiber-air interface such that errors caused by pulse amplitude fluctuations and slightly varying detector responses are corrected. Using solutions of salt and water, it is demonstrated that the technique is capable of measuring index changes of about $1 {\times} 10^{-5}$ corresponding to a salt concentrations of 0.01 %.

Implementation of Intelligence Pulse Wave Detection System (지능형 맥진기 구현)

  • Hong, Y.S.;Yu, J.S.;Chang, S.J.;Sun, S.H.;Lee, W.B.;Nam, D.H.;Yu, M.S.;Choi, M.B.;Lee, S.S.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.245-254
    • /
    • 2013
  • In oriental medicine, it is possible to classify and treat many diseases using the pulse wave detection system. Other problems may arise. As it is a very subjective way to analyze the pulse wave. One problem of the conventional pulse wave detection system is that the arterial pulse sensor is not located correctly at the radial artery. Threrefore measurement results can differ depending on the measurement position and the measurement procedure. This is mostly due to it's sensitivity to high reproducibility. In order to solve this problem this paper proposes an algorithm to analyze the weak pulse wave symptom and strong pulse wave symptom. It uses the portable pulse wave detection system which includes a Hall Sensor. As a final result, it analyzed the weak pulse wave symptom and strong pulse wave symptom by the SPSS statistics technique. It proves that N time (notch point time) and S Amp (rise waveform size) mean values are significantly different in 95% confidence interval.