• Title/Summary/Keyword: Pulse Load

Search Result 530, Processing Time 0.033 seconds

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth;Patel, Shuvendu N.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.181-190
    • /
    • 2020
  • In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Power Line Communication Method with Splitting of Power Transmission Interval (전력전송구간을 분할하여 데이터 신호를 전송하는 전력선 통신방법)

  • Cho, Jae-Seung;Hwang, Il-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.252-258
    • /
    • 2012
  • This paper studies the power line communication method with splitting of power transmission interval in the small DC power system using pulse width modulation. The method divides the entire interval for transmitting power and data into a power transmission interval where power is supplied to a load and a data transmission interval where power from the power supply to the load is disconnected. The circuit is designed for the implementation to separate the power line from the power supply and load. The results of tests show the feasibility of the proposed power line communication method.

Design of a Power Factor Measurement System for Nonlinear Load

  • Shahriar, Md. Rifat;Chong, Ui-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.113-122
    • /
    • 2011
  • This paper introduces and develops an efficient method for measuring power factor (PF) and its nature under nonlinear load current situations. The method is based on generating a pulse width modulated signal whose width correlates to the value of PF. This signal can then be employed as a feedback signal for controlling PF related power quantities in a system. This method has the advantages of its simple implementation, less computational complexity, and its allowable error of less than 4[%], which is justified by the computer simulation results.

Dielectric Barrier Discharge for Ultraviolet Light Generation and Its Efficient Driving Inverter Circuit

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.101-105
    • /
    • 2004
  • The efficient power MOSFET inverter applied for a simple and low cost power supply is proposed for driving the dielectric barrier discharge (DBD) lamp load. For decades, the DBD phenomenon has been used for ozone gas production in industry. In this research, the ultraviolet and visible light sources utilizing the DBD lamp is considered as the load for solid-state high frequency power supply. It is found that the simple voltage-source single-ended quasi-resonant ZVS inverter with only one active power switch could effectively drive this load with the output power up to 700 W. The pulse density modulation based control scheme for the single-ended quasi-resonant ZVS inverter using a low voltage and high current power MOSFET switching device is proposed to provide a linear power regulation characteristic in the wide range 0-100% of the full power as compared with the conventional control based Royer type parallel resonant inverter type power supplies.

Study on the high precision output of 50kV high-voltage inverter (50kV 고전압 인버터 고정밀 출력설계에 관한 연구)

  • Son, Y.G.;Suh, J.H.;Oh, J.S.;Cho, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2199-2201
    • /
    • 2005
  • High voltage power supply with pulse load($4.5{\mu}s$ and PRF 60Hz) condition is investigated which is of interest for applications like Klystron modulator power supplies with output voltage of 50kV. The performance specifications with this type of power supplies are very stringent demanding tight regulation(<0.01%) and high efficiency(> 85%). The solution to this problem as a single stage converter is very difficult. The final output voltage is obtained as sum of the output of SCPS & PCPS. The combination of the two stages can satisfy the pulse load specifications. The analysis of the voltage and power division between SCPS & PCPS has been done for the proposed topology. It has studied under various operating conditions of line and load. Simulation results are validated by experimental results.

  • PDF

A study on the pulse forming of pulsed $CO_2$ laser using active multi-pulse superposition (능동적 다중 펄스 중첩법(AMPS)을 적용한 펄스형 $CO_2$ 레이저의 펄스 성형에 대한 연구)

  • Chung, Hyun-Ju;Park, Sung-Joon;Jung, Yong-Ho;Song, Gun-Ju;Kim, Hee-Je;Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1631-1633
    • /
    • 2001
  • In manufacturing processes, various and suitable pulse shapes are required for the purpose of material processing and the pulseshape is regarded as a dominant factor due to the specific property of processing materials. Therefore, in this study, a variable pulse width, high duty cycle Pulse Forming Network(PFN) is constructed by time sequently. The power supply for this experiment consists of three switching circuits. The PFN elements operate at low voltage and drive the primary of HV leakage transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence of properly phased and nested increments. We investigated laser pulse width as various delay time among three switching circuit. As a result, we tan obtain various laser pulse width from about 4ms to 10ms. The maximum laser pulse width obtained at this experiment was about 10ms at delay time of 4ms among each switching circuit.

  • PDF

UWB Transceiver Modeling Using the TDMG Pulse Generator (TDMG(Time Delay Multiple Gaussian) 펄스 발생기를 이용한 UWB 송수신기 모델링)

  • Ko Young-Eun;Park Jin-Hwan;Bae Bag-Geun;Choi Min-Sung;Bang Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.313-316
    • /
    • 2004
  • In this paper analyzed characteristics of the exist ing pulse of the UWB system, modeled TDMG pulse generator without attenuation of pulse width, Then we designed UWB transceiver which load TDMG pulse generator. Result of Simulation, it had high data rate and low BER. As well as, satisfying the spectrum Mask recommended by the FCC

  • PDF

Bi-polar High-voltage Pulse Generator Using Semiconductor switches (반도체 스위치를 이용한 양방향 고압 펄스 발생기)

  • Kim J.H.;Ryu M.Y.;Jung I.W.;Shenderey S.;Kim J.S.;Rim G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.291-293
    • /
    • 2003
  • A semiconductor switch-based fast hi-polar high voltage pulse generator is proposed in this paper The proposed pulse system is made of a thyristor based-rectifier, DC link capacitor, a push-pull resonant inverter, a high voltage transformer. secondary capacitor, a high voltage IGBT & diode stacks, and a variable capacitor. The proposed system makes hi-polar high voltage sinusoidal waveform using resonance between leakage inductance of the transformer and secondary capacitor and transfers energy to output load at maximum of the secondary capacitor voltage. Compared to previous hi-polar high voltage pulse power supply using nonlinear transmission line, the proposed pulse power system using only semiconductor switches has simple structure and gives high efficiency

  • PDF

A Zigzag Connected Auto-Transformer Based 24-Pulse AC-DC Converter

  • Singh, Bhim;Gairola, Sanjay
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • In this paper, a 24-pulse AC-DC converter is designed, modeled, simulated, and developed to feed non-isolated varying loads. The proposed AC-DC converter configuration consists of an auto-transformer based on zigzag connection to overcome current harmonic problems in AC mains. It improves power quality at AC mains and it meets IEEE-519 standard requirements at varying loads. A set of power quality indices on input AC mains and on DC buses for a load fed from 6-pulse and 12-pulse AC-DC converters is also given to compare their performance. It is observed that input current total harmonic distortion(THD) of less than 8% is possible with the proposed topology of AC-DC converter at varying loads.

Resonant Pulse Power Converter with a Self-Switching Technique

  • Kim, Hyeok-Jin;Chung, Gyo-Bum;Cho, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.784-791
    • /
    • 2010
  • In this paper, a resonant pulse power converter (RPPC) is proposed. The proposed RPPC transfers the pulse-shape power from a DC source to a load periodically. The RPPC consists of a resonant circuit and a resonant pulse converter driven by a self-switching circuit. Depending on the magnitude difference between the input and output voltages, the operations of the RPPC are divided into 4 modes; boost mode, hybrid mode, direct mode and cut-off mode, respectively. The main switch of the RPPC turns on in the ZCS condition and off in the ZVS condition spontaneously. The operational principles of a RPPC using the self-switching technique are analyzed and verified in experiments. An example of a RPPC application is demonstrated in the area of thermoelectric energy harvesting.