• 제목/요약/키워드: Pulse Laser Ablation

검색결과 101건 처리시간 0.026초

515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석 (Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser)

  • 신동식;조용권;손현기;서정
    • 한국레이저가공학회지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

Measurement and Prediction of Damage Threshold of Gold Films During Femtosecond Laser Ablation

  • Balasubramani, T.;Kim, S.H.;Jeong, S.H.
    • 한국레이저가공학회지
    • /
    • 제11권4호
    • /
    • pp.13-20
    • /
    • 2008
  • The damage threshold measurement of gold films is carried out with ultrashort-pulse laser. An enhanced two temperature model is developed to encounter the limitation of linear modeling during ultrashort pulse laser ablation. In which the electron heat capacity is calculated using a quantum mechanical approach based on a Fermi-Dirac distribution, temperature-dependent electron thermal conductivity valid beyond the Fermi temperature is adopted, and reflectivity and absorption coefficient are estimated by applying a temperature-dependent electron relaxation time. The predicted damage threshold using the proposed enhanced modelclosely agreed with experimental results, demonstrating the importance of considering transient thermal and optical properties in the modeling of ultrashort pulse laser ablation.

  • PDF

나노초 레이저를 이용한 PMMA의 습식 및 건식어블레이션 비교 연구 (Comparison study of nanosecond laser induced wet and dry ablation of PMMA)

  • 이호
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.243-250
    • /
    • 2019
  • The nanosecond laser assisted ablation have been investigated. The biocompatable polymer PMMA was employed as the target material and the two distinctive surface conditions were test. The first surface condition is a dry surface for which the target surface is exposed to air and the second surface condition is the wet surface for which the target surface is covered with dehydrated water. The ablation volume, the laser induced acoustic wave, the laser induced plasma were investigated for both wet and dry condition. The nanosecond laser pulse ablatied more on the wet surface compared to the dry surface. The enhanced ablation of wet surface is attributed to the confined acoustic wave and the laser-induced plasma in the liquid layer.

Direct write patterning of ITO film by Femtosecond laser ablations

  • Farson, Dave;Choi, Hae-Woon;Kim, Kwang-Ryul;Hong, Soon-Kug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.583-588
    • /
    • 2005
  • Indium tin oxide (ITO) is a commonly used conducting transparent oxide film (CTO) used in flat panel display applications. Direct write laser ablation is sometimes employed for ITO patterning and it is important that the substrate material and remaining ITO be affected as little as possible by the laser ablation. In this investigation, femtosecond laser ablation of ITO was studied to identify laser processing parameters which cleanly ablated ITO with a minimum of damage to a glass substrate and surrounding ITO. The Ti:Sapphire chirp pulse amplified femtosecond laser used for the experiments had a wavelength of 775nm and produced pulses with a duration of 150fs at a rate of 2 kHz. Ablation was carried out at a sufficiently high panel scanning speed that single ablation spots could be studied. The pulse energy was adjusted to determine feasible spot diameters and depths which could be ablated into the ITO without damaging the glass substrate. Next, ablation of lines without glass damage was also demonstrated. Experiments were also performed with a high repetition rate (100kHz) femtosecond laser.

  • PDF

극초단펄스 레이저에 의한 크롬박막 미세가공 (Ablation of Cr Thin Film on Glass Using Ultrashort Pulse Laser)

  • 김재구;신보성;장원석;최지연;장정원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.620-623
    • /
    • 2003
  • The material processing by using ultrashort pulse laser, in recently, is actively applying into the micro machining and nano-machining technology since ultrashort pulse has so faster than the time which the electrons energy absorbing photon energy is transmitted to surrounding lattice-phonon that it has many advantages in point of machining. The micro machining of metallic thin film on the plain glass is widely used in the fields such as mask repairing for semiconductor, fabrication of photonic crystal, MEMS devices and data storage devices. Therefore, it is important to secure the machining technology of the sub-micron size. In this research, we set up the machining system by using ultrashort pulse laser and conduct on the Cr 200nm thin film ablation experiments of spot and line with the variables such as energy, pulse number, speed, and so on. And we observed the characteristics of surrounding heat-affected zone and by-products appeared in critical energy density and higher energy density through SEM, and also examined the machining features between in He gas atmosphere which make pulse change minimized by nonlinear effect and in the air. Finally, the pit size of 0.8${\mu}{\textrm}{m}$ diameter and the line width of 1${\mu}{\textrm}{m}$ could be obtained.

  • PDF

레이저를 이용한 유리기판의 미세가공(微細加工) (Micro-Processing of Glass Substrates Using a Laser)

  • 이천;풍전호일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1425-1427
    • /
    • 1994
  • Laser ablation of glass substrates (8K-7 and synthetic quartz) using a transversely excited atmospheric (TEA) $CO_2$ laser has been inverstigated to obtain high speed etching. The ablation occurs by local heating of a substrate with a focused TEA-$CO_2$ laser beam. The dependence of ablation rate on pulse count and repetition-rate of laser has been discussed.

  • PDF

피코초 레이저를 이용한 초소수성 표면 제작에 관한 연구 (A Study on Surface Fabrication of Super Hydrophobic using Pico Second Laser)

  • 조일환;이제훈;노지환;이승원
    • 한국정밀공학회지
    • /
    • 제29권2호
    • /
    • pp.161-169
    • /
    • 2012
  • Recently, a study for the functional surface production of super hydrophobic of natural and biomimetic artificial has attracted much attention. To make process methods of super hydrophobic surface has a variety of ways such as lithography, etching, and laser ablation. However, we were used ultra-shot pulse laser ablation process which has the virtue of more environmental friendliness and simple process. In this paper, we were fabricated a multiplicity of super hydrophobic patterns on mold surface(NAK80) using by optimizing the laser processing conditions and it was transferred on PDMS. Also, we measured contact angle super hydrophobic patterns on PDMS. The result showed there is no patterns on PDMS were measured 94 degrees, by contrast, optimized super hydrophobic patterns on PDMS was 157 degrees. Therefore we fabricated super hydrophobic surface on mold. Based on these experimental results, it is possible to mass production using ultra shot pulse laser ablation of super hydrophobic pattern and to be applied for a variety of industries.

나노초 가시광 레이저 펄스를 이용한 사파이어 미세천공 공정의 해석 (Analysis of Sapphire Microdrilling by a Nano Second Visible Laser Pulse)

  • 오부국;정영대;김남성;김동식
    • 한국레이저가공학회지
    • /
    • 제12권1호
    • /
    • pp.7-13
    • /
    • 2009
  • Engineering ceramics as sapphire are widely used in industry owing to their superior mechanical and corrosion properties. However, micromachining of sapphire is a considerable challenge due to its transparency. Recently, direct ablation of sapphire has been demonstrated with a visible laser pulse at sufficiently high laser intensity. In this work, the theoretical model for pulsed laser ablation of sapphire is suggested and numerical analysis is carried out using the model. Sapphire ablation begins with plasma generation by the laser interaction with surface defects, impurities and contaminations in the initial stage of machining. Subsequent absorption of the visible laser beam can be explained by three mechanisms: metalization of sapphire surface due to the EUV radiation from the hot plasma, increments of surface roughness and temperature-dependent absorption coefficient. Comparison of the computation results with experimental observation indicates that the proposed model of sapphire is reasonable.

  • PDF

515 nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최적 에너지밀도에 대한 이론적 분석 (Theoretical Analysis on the Optimum Fluence for Copper Ablation with a 515 nm Picosecond Laser)

  • 신동식;조용권;손현기
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1009-1015
    • /
    • 2013
  • Ultra-short laser pulses are effective, when high requirements concerning accuracy, surface roughness and heat affected zone are demanded for surface structuring. In particular, picosecond laser systems that are suited to be operated in industrial environments are of great interest for many practical applications. This paper focused on inducing optimum process parameters for higher volume ablation rate by analyzing a relationship between crater diameter and optical spot size. In detail, the dependency of the volume ablation rate, penetration depth and threshold fluence on the pulse duration 8 ps and wavelength of 515 nm was discussed. The experimental results showed that wavelength of 515 nm resulted in less threshold fluence ($0.075J/cm^2$) on copper than IR wavelength ($0.3J/cm^2$). As a result, it was possible that optimum fluence for higher volume ablation rate was achieved with $0.28J/cm^2$.