• Title/Summary/Keyword: Pulsation Pressure Wave

Search Result 29, Processing Time 0.024 seconds

Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant (복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책)

  • Kim, Yeon-Whan;Kim, Jae-Won;Park, Hyun-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

The Development of Muffler with Controller Sensing Exhaust-gas Pressure in Automotive Exhaust System (II) (자동차 배기계의 배기압 감응형 제어 머플러 개발에 관한 연구 (II) - 배기압 감응형 제어 머플러의 소음특성과 스프링 상수 - 최초 열림 압력의 관계 -)

  • 이해철;이민호;이준서;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2003
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. A control valve and a control muffler sensing exhaust-gas pressure are made f3r developing a new muffler. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develope a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers. Finally the characteristic of noise compared with conventional muffler and muffler sensing exhuast-gas pressure.

The change of spray characteristics on hydraulic acoustic wave influence and prediction of low combustion instability (수력파동에 의한 분무변화 및 저주파 연소불안정에의 영향 예측)

  • Kim, Tae-Kyun;Lee, Sang-Seung;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.152-160
    • /
    • 2004
  • Studies to investigate the influence on hydraulic acoustic wave were conducted using pressure swirl atomizer under making frequency range from 0 to 60Hz using water as a propellant. Pressure oscillation from hydraulic sources gives a strong influences on atomization and mixing processes. The ability to drive these low frequency pressure oscillations makes spray characteristics changeable. The effect of pressure perturbation and its spray characteristics showed that low injector pressure with pressure pulsation gives more significantly than high injector pressure with pressure perturbation in SMD, spray cone angle, breakup length. Moreover, this data could be used for prediction of low combustion instability getting G factor.

  • PDF

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

Vibration Effect for Branch Pipe System due to Main Steam Header Pulsation (주증기 배관 헤더의 맥동이 분기 배관에 미치는 영향)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.780-785
    • /
    • 2005
  • Vibration has been severly increased at the branch pipe of main steam header since the commercial operation of a nuclear power plant. Intense broad band disturbance flow at the discontinuous region such as elbow, valve or heather generates the acoustical pulsation which is propagated through the piping system. The pulsation becomes the source of low frequency vibration at piping system. If it coincide with natural frequency of the pipe system, excessive vibration is made. High level vibration due to the pressure pulsation related to high dynamic stress, and ultimately, to failure probability affects fatally the reliability and confidence of plant piping system. This paper discusses vibration effect for the branch pipe system due to acoustical pulsations by broad band disturbance flow at the large main steam header in 7nn nuclear power plant. The exciting sources and response or the piping system are investigated by using on site measurements and analytical approaches. It is identified that excessive vibration is caused by acoustical pulsations of 1.3Hz, 4.4Hz and 6.6Hz transferred from main steam header, which are coincided with fundamental natural frequencies of the piping structure. The energy absorbing restraints with additional stiffness were installed to reduce excessive vibration.

  • PDF

The Development of Muffler with Controller Sensing Exhaust Gas Pressure in Automobile Exhaust System(1) -The general characteristics of exhaust system and characteristics of control valve- (자동차 배기계의 배기압 감응형 제어 머플러 개발(1) -배기계의 일반 특성과 제어 밸브의 특성-)

  • 이해철;이준서;윤준규;차경옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2001
  • This study is focused on the development of a new muffler. A control valve installed in the exhaust system is operated by torsion springs, and its open angle is controlled automatically corresponding to the engine operating conditions. The experiments were done using an exhaust system simulator having the same pulsation wave frequency and similar pulsation propagation characteristics of a real exhaust system. The purpose of this study is to develop a new muffler system which has improved noise reduction quality and less power loss than conventional mufflers and electronic-control mufflers.

  • PDF

Phenomenon Examination on High Vibration of NG Boiler in 320MW Thermal Power Plant (320MW 화력발전소 가스 보일러 고 진동 현상 규명)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Lee, Hyun;Kim, Hee-Soo;Lee, Doo-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1034-1039
    • /
    • 2006
  • Large-amplitude, combustion-induced oscillations are observed in most systems involving continuous flow, such as aeroengine afterburners, gas boilers and rocket motors. Strong furnace vibration is typically characterized by the presence of well developed standing waves in the furnace, generating high pressure pulsation and causing structural vibration of the furnace walls. 320MW NG boilers have been experienced high vibration frequently since reconstruction works. Excessive furnace vibration was encountered when a burner air rate is suddenly reduced during load zone changed from 270MW to 300MW. An investigation showed that the primary cause of the vibration was induced by combustion low air flow rate. This paper describes phenomenon examination on strong furnace vibration due to the change of boiler operating conditions.

  • PDF

A Study on Muffler′s Transmission Loss and Backpressure Property (소음기의 투과손실 및 배압특성에 관한 연구)

  • 정경훈;황원걸;이유엽;김기세
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.676-681
    • /
    • 2001
  • We usually divide the noise of exhaust system into pulsation noise and flow noise. Pulsation noise is the shock wave to occur when the burning gas of low pressure emits and include harmonic having basic frequency as the exhaust cycle of engine. Flow noise is the noise that is produced when gas flow emits into the atmosphere through the pipe and has the character of frequency like pink noise which has the high level of high frequency component. A muffler is divided into reflective type and absorptive type. We usually use the muffler compounding the property of them. In this study, it is the case of transfer matrix method that a muffler is compounded to analyze the elements of each section according to sound wave's proceed direction. But we use simple model. So, we use finite element method that takes short time to analyze. Acoustic analysis gives us transfer matrix to use FEA of SYSNOISE and we use STAR-CD for fluid analysis. We made database that is based on analytical results about the muffler of expansion type, extended type, offset type, reverse type, and perforated type and developed the muffler design system to perform work efficiently.

  • PDF

Analysis of the Impact of Reflected Waves on Deep Neural Network-Based Heartbeat Detection for Pulsatile Extracorporeal Membrane Oxygenator Control (반사파가 박동형 체외막산화기 제어에 사용되는 심층신경망의 심장 박동 감지에 미치는 영향 분석)

  • Seo Jun Yoon;Hyun Woo Jang;Seong Wook Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.128-137
    • /
    • 2024
  • It is necessary to develop a pulsatile Extracorporeal Membrane Oxygenator (p-ECMO) with counter-pulsation control(CPC), which ejects blood during the diastolic phase of the heart rather than the systolic phase, due to the known issues with conventional ECMO causing fatal complications such as ventricular dilation and pulmonary edema. A promising method to simultaneously detect the pulsations of the heart and p-ECMO is to analyze blood pressure waveforms using deep neural network technology(DNN). However, the accurate detection of cardiac rhythms by DNNs is challenging due to various noises such as pulsations from p-ECMO, reflected waves in the vessels, and other dynamic noises. This study aims to evaluate the accuracy of DNNs developed for CPC in p-ECMO, using human-like blood pressure waveforms reproduced in an in-vitro experiment. Especially, an experimental setup that reproduces reflected waves commonly observed in actual patients was developed, and the impact of these waves on DNN judgments was assessed using a multiple DNN (m-DNN) that provides accurate determinations along with a separate index for heartbeat recognition ability. In the experimental setup inducing reflected waves, it was observed that the shape of the blood pressure waveform became increasingly complex, which coincided with an increase in harmonic components, as evident from the Fast Fourier Transform results of the blood pressure wave. It was observed that the recognition score (RS) of DNNs decreased in blood pressure waveforms with significant harmonic components, separate from the frequency components caused by the heart and p-ECMO. This study demonstrated that each DNN trained on blood pressure waveforms without reflected waves showed low RS when faced with waveforms containing reflected waves. However, the accuracy of the final results from the m-DNN remained high even in the presence of reflected waves.

Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline (유압관로에서 비정상유동의 압력전파특성)

  • Yu, Yeong-Tae;Na, Gi-Dae;Kim, Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.