• Title/Summary/Keyword: Pulsating voltage

Search Result 37, Processing Time 0.02 seconds

Electrical Breakdown Properties of Oil-paper Insulation under Pulsating Voltage Influenced by Temperature

  • Bao, Lianwei;Li, Jian;Zhang, Jing;Li, Xudong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1735-1743
    • /
    • 2016
  • Insulation of valve-side windings in converter transformer withstands pulsating voltages, which will produce more serious insulation problems. In this paper, the electric breakdown experiments of oil-paper insulation specimens were executed at pulsating voltages and different temperatures. Experiment and analysis results showed that the breakdown voltage decreased with increasing temperature under pulsating voltage. The influence of temperature proves to be more significant once the temperature exceeds a limitation threshold. A fitting formula between breakdown voltage and the temperature was reported. Finally, in order to clearly understand the breakdown properties under pulsating voltage, the electric field distribution and space charge behavior under pulsating voltage at different temperature were discussed.

Partial Discharge Process and Characteristics of Oil-Paper Insulation under Pulsating DC Voltage

  • Bao, Lianwei;Li, Jian;Zhang, Jing;Jiang, Tianyan;Li, Xudong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.436-444
    • /
    • 2016
  • Oil-paper insulation of valve-side windings in converter transformers withstand electrical stresses combining with AC, DC and strong harmonic components. This paper presents the physical mechanisms and experimental researches on partial discharge (PD) of oil-paper insulation at pulsating DC voltage. Theoretical analysis showed that the phase-resolved distributions of PDs generated from different insulated models varied as the increase of the applied voltages following a certain rule. Four artificial insulation defect models were designed to generate PD signals at pulsating DC voltages. Theoretical statements and experimental results show that the PD pulses first appear at the maximum value of the applied pulsating DC voltage, and the resolved PD phase distribution became wider as the applied voltage increased. The PD phase-resolved distributions generated from the different discharge models are also different in the phase-resolved distributions and development progress. It implies that the theoretical analysis is suitable for interpretation of PD at pulsating DC voltage.

Performance Analysis of the AC-DC Transformation Method using Multi-level Pulsating Current and Selection Switch (다단 맥류 스위칭을 이용한 교류-직류 변환의 성능분석)

  • Lee, Jae-Seang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.586-593
    • /
    • 2010
  • In this paper, I have proposed that the 1st and 2nd AC-DC transformation methods using multi-level pulsating currents and selection switches. Through making the rectified voltage of the proposed AC-DC translation which is similar to reference voltage by selecting from multi-level pulsating currents, the proposed translation has dramatically reduced the ripple voltage. I have compared the performance of the DC voltage, the ripple voltage and the peak to peak voltage of the proposed method with the conventional method. The simulation results show that the proposed 2nd method has the better performance than the 1st method in the point of average DC voltage drop and peak to peak voltage increase.

Multistress Life Models of Epoxy Encapsulated Magnet wire under High Frequency Pulsating Voltage

  • Grzybowski, S.;Feilat, E.A.;Knight, P.
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.1
    • /
    • pp.1-4
    • /
    • 2003
  • This paper presents an attempt to develop probabilistic multistress life models to evaluate the lifetime characteristics of epoxy-encapsulated magnet wire with heavy build polyurethane enamel. A set of accelerated life tests were conducted over a wide range of pulsating voltages, temperatures, and frequencies. Samples of fine gauge twisted pairs of the encapsulated magnet wire were tested us-ing a pulse endurance dielectric test system. An electrical-thermal lifetime function was combined with the Weibull distribution of lifetimes. The parameters of the combined Weibull-electrical-thermal model were estimated using maximum likelihood estimation. Likewise, a generalized electrical-thermal-frequency life model was also developed. The parameters of this new model were estimated using multiple linear regression technique. It was found in this paper that lifetime estimates of the two proposed probabilistic multistress life models are good enough. This suggests the suitability of using the general electrical-thermal-frequency model to estimate the lifetime of the encapsulated magnet wire over a wide range of voltages, temperatures and pulsating frequencies.

Optimal PWM Strategy for Minimization of Torque Ripplis of a Variable Speed 3phase Induction Motor (가변속 3상 유도 전동기의 토오크 변동 최소화를 위한 OPtimal PWM 방식)

  • 이윤종;정동화
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.6
    • /
    • pp.217-225
    • /
    • 1986
  • This paper describes the Optimal PWM strategy to reduce a pulsating harmonic torque for a variable-speed drive of 3 phase induction motor. This paper suggests the new Optimal control theory which consists of 1) defining a performance index related to the unwanted effects of the voltage harmonics, (i.e., the components of pulsating harmonic torques) 2) achieving its minimization by a suitable choice of the switching patterns. (i.e., of the commutation angles) This PWM strategy is compared with the conventional SPWM strategy by numerical method. It is believed that this proposed strategy can reduce more harmonic components and pulsating harmonic torques than SPWM strategy. Also, We could verify the validety of the numerical method by a result of simulation analysis of a variable speed 3phase induction motor.

  • PDF

A Study of propulsion control algorithm of Tilting Train eXpress (틸팅 열차 추진시스템의 제어 알고리즘에 관한 연구)

  • Kim Hyung-Chul;Choi Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.800-805
    • /
    • 2005
  • In this study, control schemes are proposed for a propulsion system of TTX(Tilting Train eXpress). In developed traction converter, unity power factor control, compensation method of dc link voltage have been applied. Output current of converter contains harmonic ripple at twice input ac line frequency, which causes a ripple in the dc link voltage so that beatless control is developed in inverter system to reduce the pulsating torque current. This system is verified by the system modelling and prototype test.

  • PDF

Characteristic of Boost input type active clamp DC-DC converter (Boost 입력형 능동클램프 DC-DC 컨버터의 동작특성)

  • Ceong, Cin-Beom;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.301-303
    • /
    • 2001
  • This paper proposes the boost input type active clamp DC-DC converter featuring the high efficiency and improved EMI characteristics. The main characteristic of the converter is to operate with the non-pulsating input and output currents. Besides, it has the zero-voltage switching (ZVS) and low voltage stress characteristics. For the proposed converter, the detailed operation principles and the simulation results are presented.

  • PDF

The Analysis of the torque ripple of Traction Motor in the VSI system (전압원 인버터 파형에 따른 견인 전동기의 맥동 토오크 해석)

  • Rhee, Kee-Hong;Yun, Shin-Yong;Kim, Yong;Baek, Su-Hyun;Kang, Ho-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.145-147
    • /
    • 1996
  • Traction Motor is being transferred to the squirrel cage induction motor from D.C motor, by the improved power semiconductors like GTO, IGBT, etc. In the Induction Motor, inverter system must be used for delivering variable voltage variable frequency. But, by pulsating in the system the harmonics would be produced, and that cause the torque ripple and enfeeble the dynamic characteristics of the motor. So, to use the inverter system, we should take the torque ripple into consideration. To minimize the torque ripple in the VSI fed Traction Motor, the optimal pulsating was presented in this paper. By using the SPWM(Sinusoidal Pulse Width Modulation) method, feeding the appropriate pulse, we can minimize the torque ripple and improve the transient response.

  • PDF

A Unity Power Factor Electronic Ballast for Fluorescent Lamp having Improved Valley Fill and Valley Boost Converter (개선된 밸리필과 밸리용 승압형 변환기를 결합한 고역률 형광등용 전자식 안정기)

  • Youn, Yong-Sik;Chae, Gyun;Cho, Gyun-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2002-2006
    • /
    • 1997
  • A new PF correction topology, Improved Valley Fill (IVF) with Valley Boost Converter (VBC) used in the electronic ballast for fluorescent lamp is presented. The IVF can adjust the valley voltage higher than half the peak line voltage. Hence, there is no pulsating line current around the line voltage peak, PF and THD are significantly improved. The VBC is added to the IVF to achieve unity PF and to increase the valley voltage. The measured PF and THD for a prototype electronic ballast are 0.997 and 5%, respectively, and the lamp current CF is as low as 1.5

  • PDF

An Improved Control Method for a DFIG in a Wind Turbine under an Unbalanced Grid Voltage Condition

  • Lee, Sol-Bin;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.614-622
    • /
    • 2010
  • This paper presents a control method, which reduces the pulsating torque and DC voltage problems of a doubly fed induction generator (DFIG)-based wind turbine system. To reduce the torque and power ripple, a current control scheme consisting of a proportional integral (PI) controller is presented in a positive synchronously rotating reference frame, which is capable of providing precise current control for a rotor-side converter with separated positive and negative components. The power theory can reduce the oscillation of the DC-link voltage in the grid-side converter. In this paper, the generator model is examined, and simulation results are obtained with a 3 kW DFIG-based wind turbine system to verify the proposed control strategy.