• Title/Summary/Keyword: Pulsar

Search Result 58, Processing Time 0.025 seconds

Implications of PSR J0737-3039B for the Galactic NS-NS Binary Merger Rate

  • Kim, Chunglee;Perera, Benetge Bhakthi Pranama;McLaughlin, Maura A.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.88.4-89
    • /
    • 2015
  • The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate $R_g$ among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on $R_g$ using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (~2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain $R_g=21_{-14}{^+28}$ per Myr at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be $8_{-5}{^+10}$ per yr at 95 per cent confidence. We discuss prospects of gravitational-wave detection based on our results. Implications of PSR J1906+0746, which is likely to be another tight NS-NS binary in the Galactic disc supported by recent observation, are also remarked.

  • PDF

Timing analysis for the magnetar-like pulsar, PSR J1119-6127

  • Lin, Chun-Che Lupin;Hui, C.Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2018
  • Studies on rotation-powered pulsars with strong surface magnetic field may help us clarify the unclear link between magnetars and canonical radio pulsars because the magnetar-like emission is expected to be observed. PSR J1119-6127 associated with SNR G292.2-0.5 has a high magnetic field of $4.1{\times}1013$ gauss, and a young characteristic age of ~1700 years can be served as the good candidate to compare with magnetars and rotation-powered pulsars. The glitch accompanied by the radiative changes detected in 2007 is the first case we observed for a rotationally powered radio pulsar. This pulsar experienced magnetar-like outbursts in mid. 2016, similar to the 2006 transition occurred on the other radio-quiet rotation-powered pulsar with strong surface magnetic field, PSR J1846-0258. In this talk, I'll report the investigation with X-ray and gamma-ray data of this magnetar-like pulsar. A sudden decrease in the gamma-ray emission at the GeV band was detected immediately after the X-ray outburst. Accompanying with the disappearance of the radio pulsation, the gamma-ray pulsation cannot be resolved as well after the outburst. We tried to derive the timing behavior and some intriguing features of this pulsar in this work corresponding to the outburst using the Swift data, NuSTAR and XMM observations.

  • PDF

X-RAY PROPERTIES OF THE PULSAR PSR J0205+6449 IN 3C 58

  • Kim, Minjun;An, Hongjun
    • Journal of The Korean Astronomical Society
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency ν = 15.20102357(9) s-1 and its derivative $\dot{\nu}=-4.5(1){\times}10^{-11}\;s^{-2}$ during the observation period, and model the 2-30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2-30 keV flux F2-30 keV = 7.3±0.6 × 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to fit the Chandra spectra and infer the surface temperature T∞ and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 × 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800-5600 yrs.

OPTICAL INVESTIGATION OF THE CRAB PULSAR: SIMULTANEOUS UBVR LIGHT CURVES WITH TIME RESOLUTION OF 3.3 ${\mu}s$ AND SPECTROSCOPY

  • KOMAROVA V. N.;BESKIN G. M.;NEUSTROEV V. V.;PLOKHOTNICHENKO V. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.217-218
    • /
    • 1996
  • The results of the Crab pulsar observations with the photometrical MANIA (Multichannel Analysis of Nanosecond Intensity Alterations) complex at the 6-m telescope are presented. More than 12 millions photons in UBVR-bands simultaneously with time resolution of $10^{-7}s$ were detected. Using the original software for search for optical pulsar period, we obtained the light curves of the object with time resolution of about 3.3 ${\mu}s$. Their detailed analysis gives the spectral change during pulse and subpulse, the shape of the pulse peaks, which are plateaus (with the duration of about 50${\mu}s$ for the main pulse), limits for an amplitude of fine temporal (stochastic and regular) structure of pulse and sub pulse and the interpulse space intensity. The results of CCD-spectroscopy of the Crab pulsar show that its summarized spectrum is flat. There are no lines, neither emission nor absorbtion ones. Upper limit for line intensity or depth is $3.5\%$ with the confidence probability of $95\%$.

  • PDF

THE PARKES PULSAR TIMING ARRAY PROJECT

  • HOBBS, GEORGE
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.577-581
    • /
    • 2015
  • The main goals of the Parkes Pulsar Timing Array (PPTA) project are to 1) detect ultra-low-frequency gravitational waves, 2) improve the solar system planetary ephemeris and 3) provide a long-term, stable time standard. In this paper, we highlight the main results from the project so far and discuss our expectations for the future.

Optical and Infrared Lightcurve Modeling of the Gamma-ray Millisecond Pulsar 2FGL J2339.6-0532

  • Yen, Tzu-Ching;Kong, Albert Kwok-Hing;Yatsu, Yoichi;Hanayama, Hidekazu;Nagayama, Takahiro;OISTER
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.159-162
    • /
    • 2013
  • We report the detection of a quasi-sinusoidally modulated optical flux with a period of 4.6343 hour in the optical and infrared band of the Fermi source 2FGL J2339.7-0531. Comparing the multi-wavelength observations, we suggest that 2FGL J2339.7- 0531 is a ${\gamma}$-ray emitting millisecond pulsar (MSP) in a binary system with an optically visible late-type companion accreted by the pulsar, where the MSP is responsible for the ${\gamma}$-ray emission while the optical and infrared emission originate from the heated side of the companion. Based on the optical properties, the companion star is believed to be heated by the pulsar and reaches peak magnitude when the heated side faces the observer. We conclude that 2FGL J2339.7-0531 is a member of a subclass of ${\gamma}$-ray emitting pulsars -the 'black widows'- recently revealed to be evaporating their companions in the late-stage of recycling as a prominent group of these newly revealed Fermi sources.

On the Spectral Shape of Non-recycled γ-ray Pulsars

  • Hui, Chung-Yue;Lee, Jongsu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.101-104
    • /
    • 2016
  • More than 100 γ−ray pulsars have been discovered by the Fermi Gamma-ray Space Telescope. With a significantly enlarged sample size, it is possible to compare the properties of different classes. Radio-quiet (RQ) γ−ray pulsars form a distinct population, and various studies have shown that the properties of the RQ population can be intrinsically different from those of radio-loud (RL) pulsars. Utilizing these differences, it is possible to further classify the pulsar-like unidentified γ−ray sources into sub-groups. In this study, we suggest the possibility of distinguishing RQ/RL pulsars by their spectral shape. We compute the probabilities of a pulsar to be RQ or RL for a given spectral curvature. This can provide a key to the estimation of the intrinsic fraction of radio-quietness in the γ−ray pulsar population, which can place a tight constraint on the emission geometry.

MEASURING TIMING PROPERTIES OF PSR B0540-69

  • Kim, Minjun;An, Hongjun
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.2
    • /
    • pp.41-47
    • /
    • 2019
  • We report on the timing properties of the 'Crab twin' pulsar PSR B0540-69 measured with X-ray data taken with the Swift telescope over a period of 1100 days. The braking index of the pulsar was estimated to be $n=0.03{\pm}0.013$ in a previous study performed in 2015 with 500-day Swift data. This small value of n is unusual for pulsars, and a comparison with an old estimate of $n{\approx}2.1$ for the same target determined ~10 years earlier suggests a dramatic change in the braking index. To confirm the small value and therefore the large change of n, we used 1100-day Swift observations including the data used in the earlier determination of n = 0.03. In this study we find that the braking index of PSR B0540-69 is $n=0.163{\pm}0.001$, somewhat larger than 0.03. Since the measured value of n is still much smaller than 2.1, we can confirm the dramatic change in the braking index for this pulsar.

A GOLDEN DECADE OF GAMMA-RAY PULSAR ASTRONOMY

  • Hui, Chung-Yue
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.171-183
    • /
    • 2018
  • To celebrate the tenth anniversary since the launch of Fermi Gamma-ray Space Telescope, we take a retrospect to a series of breakthroughs Fermi has contributed to pulsar astronomy in the last decade. Apart from significantly enlarging the population of ${\gamma}$-ray pulsars, observations with the Large Area Telescope onboard Fermi also show the population is not homogeneous. Instead, many classes and sub-classes have been revealed. In this paper, we will review the properties of different types of ${\gamma}$-ray pulsars, including radio-quiet ${\gamma}$-ray pulsars, millisecond pulsars, ${\gamma}$-ray binaries. Also, we will discuss the prospects of pulsar astronomy in the high energy regime.

Features in broadband SEDs of young pulsar wind nebulae: existence of two different electron populations

  • Kim, Chanho;An, Hongjun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.51.2-52
    • /
    • 2021
  • Pulsar Wind Nebula(PWN)는 radio부터 TeV band까지 넓은 파장에 걸쳐 복사를 하며 이 복사는 Spectral Energy Distribution(SED)으로 측정된다. 관측된 SED는 두 개의 주요한 bump를 보이는데 low-energy emission bump는 synchrotron radiation에 의해 만들어지고 high-energy emission bump는 inverse Compton scattering에 의해 만들어진다. 대부분 PWN들의 SED는 단일 전자 분포로 설명이 가능하지만 최근 연구 결과에 의하면 Crab nebula, G21.5-0.9 같은 일부 young pulsar wind nebula의 X-ray SED에서 단차나 기울기의 변화 등 단일 전자 분포로 설명하기 어려운 부분이 관측되기도 한다. 이런 PWN에 대하여 우리는 이중 전자 분포를 이용해서 broadband SED가 잘 설명이 되는지 확인하고 이를 통하여 PWN 입자 가속의 특성을 이해해보고자 한다.

  • PDF