• Title/Summary/Keyword: Pulping temperature

Search Result 38, Processing Time 0.028 seconds

Agglomeration of Toner Particles with Fatty Alcohol and Their Removal by Screening (고급알코올을 이용한 토너의 응집 및 스크리닝을 통한 제거 효과)

  • 허용성;이학래
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.2
    • /
    • pp.24-32
    • /
    • 2004
  • Toner used in xerographic printing process is hydrophobic powder with low surface energy. The toner ink film fused on paper surface can be efficiently detached from a fiber surface during pulping, but it does not fragment again into fine toner particles. Ink agglomerates that result have too large particle size to be deinked by flotation. The purpose of this study is to enhance toner agglomeration using 1-octadecanol for improving the toner removal by screening. The effect of pH, pulping temperature, and 1-octadecanol on toner agglomeration and removal by screening was investigated using image analysis methods. Results showed that the size of toner agglomerates increased substantially when pulping was carried out at high temperature under acidic condition. When toner agglomerates showed spherical shape, the particle removal efficiency of screening was improved.

Soda Pulping of Torch Ginger Stem: Promising Source of Nonwood-Based Cellulose

  • ZENDRATO, Herman Marius;DEVI, Yunita Shinta;MASRUCHIN, Nanang;WISTARA, Nyoman J.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.287-298
    • /
    • 2021
  • Torch ginger (Etlingera elatior Jack) is a potential source of lignocellulose material for various derivative products. This study aims to determine the chemical components, ratio of syringyl to guaiacyl units (S/G) in lignin, and crystallinity of the biomass of torch ginger. The effects of soda pulping on the chemical characteristics of torch ginger pulp were also studied. Pulping of the chips was conducted with active alkali of 15%, 20%, and 25% and a Liquor-to-Wood (L/W) ratio of 4:1, 5:1, and 6:1. The impregnation and pulping times at maximum temperature (170℃) were 120 and 90 min, respectively. To assess the effect of treatments on the properties of pulping, a two-factorial experimental design was applied. Results showed that the content of α-cellulose and hemicellulose in the torch ginger was 48.48% and 31.50%, respectively, with an S/G ratio of 0.70 in lignin. Soda pulping changed the crystalline structure of the biomass from triclinic to monoclinic. Active alkali, L/W ratio, and interactions considerably influenced the observed responses. The degree of delignification increased with an increase in the loading of active alkali, which lead to a decrease in the kappa number of the pulp. An active alkali content of 25% and an L/W ratio of 6:1 resulted in the highest delignification selectivity with a kappa number of 2.78 and a yield of 24%. Given its cellulose content and ease of pulping, torch ginger can be a potential raw material for derivative products that require delignification as pretreatment. However, the increase in cellulose crystallinity should be considered when converting torch ginger to bioethanol.

Preliminary Study on Organosolv Pulping of Acacia Hybrid

  • Chong, Eunice Wan Ni;Liew, Kang Chiang;Phiong, Siaw Kian
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • An attempt was made on pulp production from the fast growing plant, Acacia hybrid to determine the total yield, screened yield, Kappa number, and fibre morphology of organosolv Acacia hybrid pulp. Uniform-sized chips were taken to undergo pulping in a digester with five different concentrations of ethanol, 50%, 60%, 70%, 80% and 90% (v/v) with 1 M of sodium hydroxide as catalyst. All chips were digested in a temperature-controlled digester with constant amount of water added and temperature of $185^{\circ}C$ with the duration of three hours cooking time and correspond pressure 1.1-1.2 MPa. It was observed that increasing of ethanol concentration has led to pulp yield increment and decreased in the degree of delignification at the same time. This study was aimed to focus on the effect of the varied concentration of organic solvent towards the pulp yield and its relationship with Kappa number and pulp yield.

Optimization of Process Variables for the Soda Pulping of Carpolobia Lutea (Polygalaceae) G. Don

  • Ogunsile, B.O.;Uba, F.I.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.257-263
    • /
    • 2012
  • The selection of suitable delignification conditions and optimization of process variables is crucial to the successful operation of chemical pulping processes. Soda pulping of Carpolobia lutea was investigated, as an alternative raw material for pulp and paper production. The process was optimized under the influence of three operational variables, namely, temperature, time and concentration of cooking liquor. Equations derived using a second - order polynomial design predicted the pulp yield and lignin dissolution with errors less than 8% and 11% respectively. The maximum variations in the pulp yield using a second order factorial design was caused by changes in both time and alkali concentration. Optimum pulp yield of 43.87% was obtained at low values of the process variables. The selectivity of lignin dissolution was independent of the working conditions, allowing quantitative estimations to be established between the pulp yield and residual lignin content within the range studied.

The Effect of Chemical Pretreatment on Steam Explosion and Oxygen-alkali Pulping of Oak Wood (참나무재의 약액함침 처리가 폭쇄 및 산소-알칼리펄프화에 미치는 영향)

  • 박승영;최태호;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.3
    • /
    • pp.75-83
    • /
    • 2001
  • The potential of oxygen delignification is a powerful tool to reduce detrimental environmental effects. This study was performed to investigate the effect of steam explosion treatment of chemically treated oak wood on oxygen-alkali pulping. Pulp yield during steam explosion treatment by ${Na_2}{O_3}$-NaOH impregnation was higher than the other impregnation chemicals. Also, NaOH extraction at room temperature after steam explosion treatment improved the kappa number from 140~116 to 90~64. Oxygen-alkali pulping of chemical steam explosion treated woods affected to pulp yields. ${Na_2}{O_3}$-NaOH impregnation was very effective to higher carbohydrate yields at same delignification level. Its carbohydrate yield seemed to be highly related to the effluent pH. Oxygen-alkali pulping after steam explosion treatment of ${Na_2}{O_3}$-NaOH impregnated wood was shown that carbohydrate yield was very high because its effluent pH was increase from natural to mild alkali. Even if oxygen bleaching limit the delignification to 50% in order to avoid unacceptable yield and viscosity losses, oxygen-alkali pulping after steam explosion by ${Na_2}{O_3}$-NaOH impregnation was possible to extend the delignification more than 80%. Considering high pulp yield with lower lignin content from steam explosion treated wood, it might be profitable to end the cook at a high kappa number instead of a low kappa number, and continuously apply the oxygen delignification, in order to better quality pulp.

  • PDF

An Overview of Biopulping Research: Discovery and Engineering

  • Scott, Gary M.;Akhtar, Masood;Lentz, Michael J.;Horn, Eric;Swaney, Ross E.;Kirk, T.Kent
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.18-27
    • /
    • 1998
  • Biopulping is defined as the treatment of wood chips with lignin-degrading fungi prior to pulping. Fungal pretreatment prior to mechanical pulping reduces electrical energy requirements during refining or increases mill throughput, improves paper strength, reduces the pitch content, and reduces the environmental impact of pulping. Our recent work involved scaling up the biopulping process towards the industrial level, investigating both the engineering and economic feasibility. We envision the process to be done in either a chip-pile or silo-based system for which several factors need to be considered: the degree of decontamination, a hospitable environment for the fungus, and the overall process economics. Currently, treatment of the chips with low-pressure steam is sufficient for decontamination and a simple, forced ventilation system maintains the proper temperature, humidity, and moisture conditions, thus promoting uniform growth of the fungus. The pilot-scale trial resulted in the successful treatment of 4 tons of wood chips (dry weight basis) with results comparable to those on a laboratory. Larger, 40-ton trials were also successful, with energy savings and paper properties comparable with the laboratory scale. The overall economics of the process also look very favorable and can result in significant annual savings to the mill. Although the current research has focused on biopulping for mechanical pulping, it is also beneficial for sulfite chemical pulping and some applications to recycled fiber have been investigated.

  • PDF

A Study on Pulping Process Condition through Design of Experiments (실험계획법을 이용한 고지 해리 공정조건에 관한 연구)

  • Kim, Sung-Kwon;Lee, Joon-Koo;Sung, Dae-Hyung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.529-535
    • /
    • 1998
  • This study was made to investigate the effect of variation in pulping process conditions such as wastepaper blending treatments, temperature, and chemical blending treatments on the deinked pulp. Design of experiments was used to select the major factors which significantly influenced on the deinked pulp. As one of the statistical analysis technique, analysis of variance and multiple comparison technique was used to find the best process condition and the predicted values and confidence intervals for brightness and strength were obtained. In the condition of $Na_2SiO_3$ 2.0%, $H_2O_2$ 0.5% and wastepaper blending treatments (KONP : AONP : OMG = 40 : 30 : 30 wt %) the highest brightness of 50.5% was predicted with 90% confidence interval (49.0, 52.0). On a concentration of $H_2O_2$ 0.5%, the highest tensile index of $35.7N{\cdot}m/g$ was predicted with 90% confidence interval (34.6, 36.6) at the pulping temperature of $50^{\circ}C$. On a concentration of surfactant 0.1%, the highest burst index of $0.129kPa{\cdot}m^2/g$ was predicted with 90% confidence interval (0.125, 0.133) at the pulping temperature of $50^{\circ}C$.

  • PDF

The Kinetics of Delignification in Oxygen·Alkali pulping (효소(酵素)·알칼리 증해(蒸解)의 탈(脱)리그닌에 관(関)한 동역학적(動力學的) 분석(分析))

  • Jo, Byoung Muk;Shin, Dong So
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.26-50
    • /
    • 1982
  • In order to obtain more detailed information concerning the degradation of lignin in the oxygen alkali pulping single stage isothermal delignification of pine wood meal (Pinus koraiensis S. et Z.) was studied in the oxygen alkali system at five temperature level ($110^{\circ}C$, $120^{\circ}C$, $130^{\circ}C$, $140^{\circ}C$, $150^{\circ}C$) for 60 min.. The rate constant, activation energy, oxygen and alkali consumption during the oxygen alkali delignification were determined by the kinetic method. The 2/5 of total lignin was eliminated at the start of the reaction. The delignification rate constant was about 3 times that of caustic soda pulping. The activation energy was about 1/3 lower than in caustic soda pulping. Like oxygen consumption, alkali consumption was also rapid early at the reaction and almost ceased after about 10 min.. The degradation reaction of lignin was strongly dependent upon the pH decrease of the cooking liquor by organic acid generated in pulping. The lignin in the oxygen alkali pulping degraded into lover molecular weight and had more hydrophillic properties. The methoxyl group decreased considerably at the first of oxygen alkali delignification, while the carbonyl, carboxyl and phenolic hydroxyl group increased rapidly.

  • PDF

Evaluation of the Efficiency of Solvent Systems to Remove Acetic Acid Derived from Pre-pulping Extraction

  • Park, Seong-Jik;Moon, Joon-Kwan;Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.447-455
    • /
    • 2013
  • Hemicellulose extract obtained by pre-pulping extraction of woodchips, is very diluted acidic in nature. The major component responsible for this weak acidity is acetic acid, present in levels up to 5~10 g/L. Here, we report an exploratory study on the extract upgrading by reactive solvent extraction of acetic acid as well as ASPEN simulation. In this study, liquid-liquid equilibria for the ternary systems (water + acetic acid + ethyl acetate) were measured at the temperature of 298.15 K and 10 (pH = 2.02), 5 (pH = 2.17), and 1 (pH = 2.48) percent of acetic acid samples were used to carry out liquid-liquid extraction studies using ethyl acetate. In a one-stage batch experiment, 96.0% of acetic acid could be extracted for the solvent when the ratio of organic-to-aqueous phases is 4:1. For simulation results, they were used to estimate the interaction parameters between each of the three compounds of the systems studied for the NRTL and UNIQUAC models. The estimated interaction parameters were successfully used to predict the equilibrium compositions by the two models.

Study on the Mechanical Extraction Properties of Tobacco Stem Biomass (담배 주맥 바이오매스의 압착추출특성 연구)

  • Sung, Yong-Joo;Han, Young-Lim;Rhee, Moon-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.2
    • /
    • pp.65-72
    • /
    • 2008
  • This work evaluated the extractability of tobacco stem biomass for the papermaking type Reconstituted Tobacco Sheet(RTS). The effects of the soaking conditions on the hydration of stem biomass and the effects of the hydrated state on the mechanical extraction were investigated. In order to simulate the mechanical expression process of a papermaking type RTS mill, for example, the screw press process, the novel mechanical pressing analyzer was developed for this study. The hydration of stem biomass by soaking process was greatly affected by the soaking time and the soaking temperature. The longer soaking time and the higher soaking temperature resulted in the higher hydrated stem biomass. Since the higher hydrated stem had more combined water in the inner structure and resulted in the more flexible structure, the higher hydrated stem leaded to the more compressed filter cake and the higher water contents in the filter cake after the mechanical pressing. The pilot pulping experiments showed the difference in hydration and extractability between burley and bright tobacco stem. The bulkier structure of the burley stem resulted in the faster hydration by pilot pulping and leaded to the larger reduction in water soluble components. And the hydration process showed the major influence on the separation efficiency of water soluble components.