DOI QR코드

DOI QR Code

Soda Pulping of Torch Ginger Stem: Promising Source of Nonwood-Based Cellulose

  • ZENDRATO, Herman Marius (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • DEVI, Yunita Shinta (Department of Forest Products, Faculty of Forestry and Environment, IPB University) ;
  • MASRUCHIN, Nanang (Research Center for Biomaterials, Indonesia Institute of Sciences (LIPI)) ;
  • WISTARA, Nyoman J. (Department of Forest Products, Faculty of Forestry and Environment, IPB University)
  • Received : 2021.03.13
  • Accepted : 2021.05.24
  • Published : 2021.07.25

Abstract

Torch ginger (Etlingera elatior Jack) is a potential source of lignocellulose material for various derivative products. This study aims to determine the chemical components, ratio of syringyl to guaiacyl units (S/G) in lignin, and crystallinity of the biomass of torch ginger. The effects of soda pulping on the chemical characteristics of torch ginger pulp were also studied. Pulping of the chips was conducted with active alkali of 15%, 20%, and 25% and a Liquor-to-Wood (L/W) ratio of 4:1, 5:1, and 6:1. The impregnation and pulping times at maximum temperature (170℃) were 120 and 90 min, respectively. To assess the effect of treatments on the properties of pulping, a two-factorial experimental design was applied. Results showed that the content of α-cellulose and hemicellulose in the torch ginger was 48.48% and 31.50%, respectively, with an S/G ratio of 0.70 in lignin. Soda pulping changed the crystalline structure of the biomass from triclinic to monoclinic. Active alkali, L/W ratio, and interactions considerably influenced the observed responses. The degree of delignification increased with an increase in the loading of active alkali, which lead to a decrease in the kappa number of the pulp. An active alkali content of 25% and an L/W ratio of 6:1 resulted in the highest delignification selectivity with a kappa number of 2.78 and a yield of 24%. Given its cellulose content and ease of pulping, torch ginger can be a potential raw material for derivative products that require delignification as pretreatment. However, the increase in cellulose crystallinity should be considered when converting torch ginger to bioethanol.

Keywords

Acknowledgement

This research was funded by the Directorate of Research and Community Service, Deputy for Strengthening Research and Development, Ministry of Research, Technology/National Research and Innovation Agency of the Republic of Indonesia with contract number 6546/IT3.L1/PN/2020 for the PMDSU Batch V program. We would also like to thank the Integrated Laboratory of Biomaterials at the Indonesian Institute of Science for using their laboratory facilities and the given scientific and technical assistance.

References

  1. Abdel-Aal, M.A. 2013. Effect of cooking time, active alkali concentration, and refining process on the pulping and papermaking properties of buttonwood residues (Conocarpus erectus L.). World Applied Science Journal 27(1): 1-9.
  2. Abraham, E., Deepa, B., Pothan, L., Jacob, M., Thomas, S., Cvelbar, U., Anandjiwala, R. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibers: A novel approach. Carbohydrate Polymers 86(4): 1468-1475. https://doi.org/10.1016/j.carbpol.2011.06.034
  3. Asosiasi Pengusaha Hutan Indonesia [APHI]. 2019. Roadmap Pembangunan Hutan Produksi 2019 - 2045. APHI, Jakarta, Indonesia.
  4. Baptista, C., Robert, D., Duarte, A.P. 2008. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps. Bioresource Technology 99: 2349-2356. https://doi.org/10.1016/j.biortech.2007.05.012
  5. Browning, B.L. 1967. Methods of Wood Chemistry. Interscience, New York, USA.
  6. Busic, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Santek, M. I., Komes, D., Novak, S., Santek, B. 2018. Bioethanol Production from Renewable Raw Materials and its Separation and Purification: A review. Food Technology and Biotechnology 56(3): 289-311. https://doi.org/10.17113/ftb.56.03.18.5546
  7. Chang, Y.Q., Tan, S.N., Yong, J.W.H, Ge, L. 2012. Determination of Flavonoids in Costus speciosus and Etlingera elatior by Liquid ChromatographyMass Spectrometry. Analytical Letters 45: 345-355. https://doi.org/10.1080/00032719.2011.644740
  8. Chen, Y., Stevens, M.A., Zhu, Y., Holmes, J., Xu, H. 2013. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels 6(1): 8. https://doi.org/10.1186/1754-6834-6-8
  9. Faix, O. 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: 21-27. https://doi.org/10.1515/hfsg.1991.45.s1.21
  10. FAO. 2009. State of the World's Forests. Global Demand for Wood Products. http://www.fao.org/3/i0350e/i0350e02a.pdf
  11. Foster, J. 2011. Former Hawaii 2011. Wiley Publishing, Hoboken, New Jersey.
  12. Gumuskaya, E., Usta, M., Kirci, H. 2003. The effects of various pulping conditions on the crystalline structure of cellulose in cotton linters. Polymer Degradation and Stability 81(3): 559-564. https://doi.org/10.1016/S0141-3910(03)00157-5
  13. Gustavsson, M. 2007. The Significance of Liquor-to-Wood Ratio on the Reaction Kinetics of Spruce Sulphate Pulping. Master Thesis, Karlstads Universite, Sweden.
  14. Hadar, Y. 2013. Sources for lignocellulosic raw materials for the production of ethanol. In: Varaco, I. (Ed). Lignocellulose Conversion. Springer; Heidelberg. pp. 21-38.
  15. Iqbal, H.M.N., Kyazze, G., Keshavarz, T. 2013. Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. BioResources 8(2): 3157-3176.
  16. Isroi, Ishola, M.M., Millati, R., Syamsiah, S., Cahyanto, M.N., Niklasson, C., Taherzadeh, M.J. 2012. Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules 17: 14995-15012. https://doi.org/10.3390/molecules171214995
  17. Iwamoto, S., Abe, K., Yano, H. 2008. The effect of hemicelluloses on wood pulp nano fibrillation and nanofiber network characteristics. Biomacromolecules 9(3): 1022-1026. https://doi.org/10.1021/bm701157n
  18. Jaafar, F.M., Osman, C.P., Ismail, N.H., Awang, K. 2007. Analysis of Essential Oils of Leaves, Stems, Flowers and Rhizomes of Etlingera Elatior (JACK) R. M. SMITH. The Malaysian Journal of Analytical Sciences 11(1): 269-273
  19. Jang, J.H., Lee, S.H., Lee, M., Lee, S.M., Kim, N.H. 2017. Changes of micro-And nanoscopic morphology of various bioresources by different milling systems. Journal of the Korean Wood Science and Technology 45(6): 737-745. https://doi.org/10.5658/WOOD.2017.45.6.737
  20. Ji, X.-J., Huang, H., Nie, Z.-K., Qu, L., Xu, Q., Tsao, G.T. 2012. Fuels and Chemicals from Hemicellulose Sugars. Advances in Biochemical Engineering/Biotechnology 128: 199-224.
  21. Jiao, C., Xiong, J. 2014. Accessibility and morphology of cellulose fiber treated with sodium hydroxide. BioResources 9(4): 6504-6513.
  22. Jo, J.S., Jung, J.Y., Yang, J.K. 2019. Effect of the growth period on bioethanol production from the branches of woody crops cultivated in short-rotation coppices. Journal of the Korean Wood Science and Technology 47(3): 360-370. https://doi.org/10.5658/WOOD.2019.47.3.360
  23. Khanjanzadeh, H., Park, B.D. 2020. Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. Journal of the Korean Wood Science and Technology 48(2): 231-244. https://doi.org/10.5658/WOOD.2020.48.2.231
  24. Kikas, T., Tutt, M., Raud, M., Alaru, M., Lauk, R., Olt, J. 2014. Basis of energy crop selection for biofuel production: Cellulose vs. lignin. International Journal of Green Energy 13(1): 49-54.
  25. Li, C., Cheng, G., Balan, V., Kent, M.S., Ong, M., Chundawat, S.P.S., Sousa, L.D., Melnichenko, Y.B., Dale, B.E., Simmons, B.A., Singh, S. 2011. Influence of physicochemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology 102(13): 6928-6936. https://doi.org/10.1016/j.biortech.2011.04.005
  26. Li, Z., Jiang, Z., Fei, B., Cai, Z., Pan, X. 2014. Comparison of bamboo green, timber, and yellow in sulfite, sulfuric acid, and sodium hydroxide pretreatments for enzymatic saccharification. Bioresource Technology 151: 91-99. https://doi.org/10.1016/j.biortech.2013.10.060
  27. Li, M., Pu, Y., Ragauskas, A.J. 2016. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance. Frontiers in Chemistry 4(45): 1-8.
  28. Ma, X., Huang, L., Cao, S., Chen, Y., Luo, X., Chen, L. 2012. Preparation of dissolving pulp from bamboo for textile applications. Part 2. Optimation of pulping conditions of hydrolyzed bamboo and its kinetics. BioResources 7(2): 1866-1875.
  29. Mai, C.W., Wong, S.Y., Tan, E.L., Balijepalli, M.K., Pichika, M.R. 2009. Antiproliferative and Apoptotic Studies of the Standardised Extracts of Etlingera elatior on Human Colorectal Carcinoma Cells. Malaysian Journal of Chemistry 11(1): 136-142.
  30. Maimulyanti, A., Prihadi, A.R. 2015. Chemical composition, phytochemicals, and antioxidant activity from the extract of Etlingera elatior flower from Indonesia. Journal of Pharmacognosy and Phytochemistry 3(6): 233-238.
  31. Marques, G., Rencoret, J., Gutierrez, A., Rio, J.C.D. 2010. Evaluation of the chemical composition of different non-wood plant fibers used for pulp and paper manufacturing. The Open Agriculture Journal 4: 93-101. https://doi.org/10.2174/1874331501004010093
  32. Maryana, R., Ma'rifatun, D., Wheni, A., Satriyo, K.W., Rizal, W.A. 2014. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia 47: 250-254. https://doi.org/10.1016/j.egypro.2014.01.221
  33. Matthews, J.F., Himmel, M.E., Crowley, M.F. 2011. Conversion of cellulose Iα to Iβ via a hightemperature intermediate (I-HT) and other cellulose phase transformations. Cellulose 19(1): 297-306. https://doi.org/10.1007/s10570-011-9608-x
  34. Maurya, D.P., Singla, A., Negi, S. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5: 597-609. https://doi.org/10.1007/s13205-015-0279-4
  35. Min, D., Yang, C., Shi, R., Jameel, H., Chiang, V., Chang, H. 2013. The elucidation of the lignin structure effect on the cellulase-mediated saccharification by genetic engineering poplars (Populus nigra L. 3 Populus maximowiczii A.). Biomass Bioenergy 30: 1-6. https://doi.org/10.1016/j.biombioe.2005.09.001
  36. Moradbak, A., Tahir, P.M., Mohamed, A.Z., Halis, R. 2016. Alkaline sulfite anthraquinone and methanol pulping of bamboo (Gigantochloa scortechinii). BioResources 11(1): 235-248.
  37. Moreno, G., Ramirez, K., Esquivel, M., Jimenez, G. 2018. Isolation and Characterization of Nanocellulose Obtained from Industrial Crop Waste Resources by Using Mild Acid Hydrolysis. Journal of Renewable Materials 6(4): 362-369. https://doi.org/10.7569/jrm.2017.634167
  38. Nieschlag, H.J., Nelson, G.H., Wolff, J.A., Perdue, R.E. 1960. A search for new fiber crops. TAPPI 43(3): 193-201.
  39. Park, S.H., Jang, J.H., Wistara, N.J., Hidayat, W., Lee, M., Febrianto, F. 2018. Anatomical and physical properties of Indonesian bamboos carbonized at different temperatures. Journal of the Korean Wood Science and Technology 46(6): 656-669. https://doi.org/10.5658/WOOD.2018.46.6.656
  40. Pennells, J., Godwin, I.D., Amiralian, N., Martin, D.J. 2020. Trends in the production of cellulose nanofibers from non-wood sources. Cellulose 27(2): 575-593. https://doi.org/10.1007/s10570-019-02828-9
  41. Purnawati, R., Febrianto, F., Wistara, I.N.J., Nikmatin, S., Hidayat, W., Lee, S.H., Kim, N.H. 2018. Physical and chemical properties of kapok (Ceiba pentandra) and balsa (ochroma pyramidale) fibers. Journal of the Korean Wood Science and Technology 46(4): 393-401. https://doi.org/10.5658/WOOD.2018.46.4.393
  42. Rahnama, N., Mamat, S., Shah, U.K.M., Ling, F.H., Rahman, N.A.A., Ariff, A.B. 2013. Effect of alkali pretreatment of rice straw on cellulase and xylanase production by local Trichoderma harzianum SNRS3 under solid state fermentation. BioResources 8(2): 2881-2896.
  43. Ruiz-Aquino, F., Ruiz-Angel, S., Feria-Reyes, R., Santiago-Garcia, W., Suarez-Mota, M.E., RutiagaQuinones, J.G. 2019. Wood chemical composition of five tree species from Oaxaca, Mexico. BioResources 14(4): 9826-9839.
  44. Salehian, P., Karimi, K., Zilouei, H., Jeihanipour, A. 2013. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 106: 484-489. https://doi.org/10.1016/j.fuel.2012.12.092
  45. Santos, R.B., Jameel, H., Chang, H., Hart, P.W. 2013. Impact of lignin and carbohydrate chemical structures on degradation reactions during hardwood kraft pulping processes. BioResources 8(1): 158-171.
  46. Shafaei, E., Ahmad, I., Adnan. 2011. The wonder of kantan: using torch ginger fibres to produce fine art papers. SPAFA Journal 21(3): 17-25.
  47. Studer, M.H., DeMartini, J.D., Davis, M.F., Sykes, R.W., Davison, B., Keller, M., Tuskan, G.A., Wyman, C.E. 2011. Lignin content in natural Populus variants affects sugar release. Proceedings of the National Academy of Sciences 108(15): 6300-6305. https://doi.org/10.1073/pnas.1009252108
  48. Suryanto, H., Marsyahyo, E., Irawan, Y.S., Soenoko, R. 2014. Effect of alkali treatment on crystalline structure of cellulose fiber from mendong (Fimbristylis globulosa) straw. Key Engineering Materials 594-595: 720-724. https://doi.org/10.4028/www.scientific.net/KEM.594-595.720
  49. TAPPI. 1997. TAPPI Test Methods. TAPPI Press. Atlanta
  50. Tsutsumi, B.Y., Kondo, R., Sakai, K., Imamura, H. 1995. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkali systems. Holzforschung 49(5): 423-428. https://doi.org/10.1515/hfsg.1995.49.5.423
  51. Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R. 2004. Fiber dimensions, lignin, and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19(3): 245-254. https://doi.org/10.1016/j.indcrop.2003.10.006
  52. Wada, M., Hori, R., Kim, U., Sasaki, S. 2010. X-ray diffraction study on the thermal expansion behavior of cellulose Iβand its high-temperature phase. Polymer Degradation and Stability 95: 1330-1334. https://doi.org/10.1016/j.polymdegradstab.2010.01.034
  53. Wada, M., Okano, T. 2001. Localization of Iαand Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8: 183-188. https://doi.org/10.1023/A:1013196220602
  54. Wang, X., Jia, Y., Liu, Z., Miao, J. 2018. Influence of the lignin content on the properties of poly(lactic acid)/lignin-containing cellulose nanofibrils composite films. Polymers. 10: 1-14. https://doi.org/10.3390/polym10010001
  55. Wistara, N.J., Carolina, A., Pulungan, W.S., Emil, N., Lee, S.H., Kim, N.H. 2015. Effect of tree age and active alkali on kraft pulping of White Jabon. Journal of the Korean Wood Science and Technology. 43(5): 566-577. https://doi.org/10.5658/WOOD.2015.43.5.566
  56. Xiao, L.P., Shi, Z.J., Xu, F., Sun, R.C. 2012. Characterization of Lignins Isolated with Alkaline Ethanol from the Hydrothermal Pretreated Tamarix ramosissima. BioEnergy Research 6(2): 519-532. https://doi.org/10.1007/s12155-012-9266-3
  57. Yanti, H., Syafii, W., Wistara, N.J., Febrianto, F., Kim, N.H. 2019. Effect of biological and liquid hot water pretreatments on ethanol yield from mengkuang (Pandanus artocarpus Griff). Journal of the Korean Wood Science and Technology 47(2): 145-162. https://doi.org/10.5658/WOOD.2019.47.2.145
  58. Yoo, C.G., Yang, Y., Pu, Y., Meng, X., Muchero, W., Yee, K.L., Thompson, O.A., Jr., M,R. Bali, G., Engle, N.L., Lindquist, E., Singan, V., Schmutz, S., DiFazio, S.P., Tschaplinski, T.J., Tuskan, G.A., Chen, J.G., Davison, B., Ragauskas, A.J. 2017. Insights of biomass recalcitrance in natural Populus trichocarpa variants for biomass conversion. Green Chemistry 19(22): 5467-5478. https://doi.org/10.1039/c7gc02219k
  59. Yue, F., Chen, K.L., Lu, F. 2016. Low temperature sodaoxygen pulping of bagasse. Molecules 21(85): 1-12.
  60. Zhu, J., Wan, C., Li, Y. 2010. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology 101: 7523-7528. https://doi.org/10.1016/j.biortech.2010.04.060