• Title/Summary/Keyword: Pulmonary vascular resistance

Search Result 71, Processing Time 0.027 seconds

Impact of Pulmonary Arterial Elastance on Right Ventricular Mechanics and Exercise Capacity in Repaired Tetralogy of Fallot

  • Soo-Jin Kim;Mei Hua Li;Chung Il Noh;Seong-Ho Kim;Chang-Ha Lee;Ja-Kyoung Yoon
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.406-417
    • /
    • 2023
  • Background and Objectives: Pathophysiological changes of right ventricle (RV) after repair of tetralogy of Fallot (TOF) are coupled with a highly compliant low-pressure pulmonary artery (PA) system. This study aimed to determine whether pulmonary vascular function was associated with RV parameters and exercise capacity, and its impact on RV remodeling after pulmonary valve replacement. Methods: In a total of 48 patients over 18 years of age with repaired TOF, pulmonary arterial elastance (Ea), RV volume data, and RV-PA coupling ratio were calculated and analyzed in relation to exercise capacity. Results: Patients with a low Ea showed a more severe pulmonary regurgitation volume index, greater RV end-diastolic volume index, and greater effective RV stroke volume (p=0.039, p=0.013, and p=0.011, respectively). Patients with a high Ea had lower exercise capacity than those with a low Ea (peak oxygen consumption [peak VO2] rate: 25.8±7.7 vs. 34.3±5.5 mL/kg/min, respectively, p=0.003), while peak VO2 was inversely correlated with Ea and mean PA pressure (p=0.004 and p=0.004, respectively). In the univariate analysis, a higher preoperative RV end-diastolic volume index and RV end-systolic volume index, left ventricular end-systolic volume index, and higher RV-PA coupling ratio were risk factors for suboptimal outcomes. Preoperative RV volume and RV-PA coupling ratio reflecting the adaptive PA system response are important factors in optimal postoperative results. Conclusions: We found that PA vascular dysfunction, presenting as elevated Ea in TOF, may contribute to exercise intolerance. However, Ea was inversely correlated with pulmonary regurgitation (PR) severity, which may prevent PR, RV dilatation, and left ventricular dilatation in the absence of significant pulmonary stenosis.

Treatment of Pulmonary Hypertensive Crisis Using ECMO - A Case Report - (성인의 선천성 심질환 수술 후 발생한 폐동맥 고혈압 위기증에서 체외막 산소화 장치를 이용한 치험 - 1례 보고 -)

  • 최재성;김기봉
    • Journal of Chest Surgery
    • /
    • v.35 no.9
    • /
    • pp.664-667
    • /
    • 2002
  • Extracorporeal membrane oxygenation(ECMO) provides stable oxygenation to prevent elevation of pulmonary vascular resistance and bypasses a significant part of cardiac output to the pulmonary vascular bed to reduce pulmonary perfusion pressure. In addition, ECMO prevents right heart failure and low cardiac output by means of ventricular assist and reduction in volume load to right ventricle. As a result, ECMO can be used for the treatment of pulmonary hypertensive crisis after surgery for congenital heart disease, especially when it is refractory to conventional measures. We report a case of postoperative pulmonary hypertensive crisis, developed in a 37-year-old male with patent ductus arteriosus with secondary pulmonary hypertension, which was successfully managed including ECMO.

Effect of Aprotinin on Changes in Plasma Thromboxane $B_2$ and Endothelin-1 Concentratin after Extracorporeal Circulation (체외순환후 혈중 Thromboxane $B_2$와 Endothelin-1 농도 변화에 미치는 Aprotinin의 효과)

  • Lim, Cheong;Yun, Tae-jin;Kim, Yeon-seung;Kim, Seung-hoo;Lee, Jae-dam;Rho, Joon-Ryang;Song, Meong-Gun
    • Journal of Chest Surgery
    • /
    • v.33 no.3
    • /
    • pp.221-229
    • /
    • 2000
  • Background: Thromboxane A2 and endothelin-1 are the potent vasoconstrictors affecting pulmonary pathophysiology in response to whole body inflammatin following CPB. Aprotinin, as an antiiflammatory agent, may decrease the release of such vasoactive substance from pulmonary tissues, preventing pulmonary hypertension after cardiopulmonary bypass. Material and Method: Ten mongrel dogs(Bwt. ac. 20kg) were subjected to cardioupulmonary bypass for 2 hours and postbypass pulmonary vascular resistance(0, 1, 2, 3 hours) were compared with prebypass level. The dogs were divided into 2 groups; control group(n-5) and aprotinin group(n=5). In the aprotinin group, aprotinin was administered as follows; 50,000 KIU/kg mixed in pump priming solution, 50,000 KIU/kg prebypass intravenous infusion over 30 minutes, 10,000 KIU/kg/hour postbypass continuous infusion. Prebypass and postbypass 0, 1, 2, 3 hour pulmonary vascular resistance were measured. At prebypass and postbypass 0, 90, 180 minutes, blood samples were obtained from pulmonary arterial and left atrial catherers for the assay of plasma thromboxane B2 a stable metabolite of thromboxane A2, and endothelin-1 concentrations. Result: The ratios of pustbypass over prebypass pulmonary vascular at postbypass 0, 1, 2, 3 hours were 1.28$\pm$0.20, 1.82$\pm$0.23, 1.90$\pm$0.19, 2.14$\pm$0.18 in control group, 1.58$\pm$0.18, 1.73$\pm$0.01, 1.66$\pm$0.10, 1.50$\pm$0.08 in aprotinin group ; the ratios gradually increased in control group while decreased or fluctuated after postbypass 1 hour in aprotinin group. There was statistically significant difference between control group and aprotinin group at postbypass 3 hours(P=0.014). Pulmonary arterial plasma concentration of thromboxane B2(pg/ml) at prebypass, postbypass 0, 90, 180 minutes were 346.4$\pm$61.9, 529.3$\pm$197.6, 578.3$\pm$255.8, 493.3$\pm$171.3 in control group, 323.8$\pm$118.0, 422.6$\pm$75.6, 412.3$\pm$59.9, 394.5$\pm$154.0 in aprotinin group. Left atrial concentrations were 339.3$\pm$89.2, 667.0$\pm$65.7, 731.2$\pm$192.7, 607.5$\pm$165.9 in control group, 330.0$\pm$111.2, 468.4$\pm$190.3, 425.4$\pm$193.6, 4.7.3$\pm$142.8 in aprotinin group. These results showed decrement of pulmonary thromboxane A2 generation in aprotinin group. Pulmonary arterial concentrations of endothelin-1(fmol/ml) at the same time sequence were 7.84$\pm$0.31, 13.2$\pm$0.51, 15.0$\pm$1.22, 16.3$\pm$1.73 in control group, 7.76$\pm$0.12, 15.3$\pm$0.71, 22.6$\pm$6.62, 14.9$\pm$1.11 in aprotinin group. Left atrial concentrations were 7.61$\pm$17.2, 57.1$\pm$28.4, 18.9$\pm$18.2, 31.5$\pm$20.5 in control group, 5.61$\pm$7.61, 37.0$\pm$26.2, 28.6$\pm$21.7, 37.8$\pm$30.6 in aprotinin group. These results showed that aprotinin had no effect on plasma endothelin-1 concentration after cardiopulmonary bypass. Conclusion: Administration of aprotinin during cardiopulmonary bypass could attenuate the increase in pulmonary vascular resistance after bypass. Inhibition of pulmonary thromboxane A2 generation was thought to be one of the mechanism of this effect. Aprotinin had no effect on postbypass endothelin-1 concentration.

  • PDF

A study on the Early Postoperative Hemodynamic Changes after Correction of Congenital Heart Defects associated with Pulmonary Hypertension (폐동맥고혈압증을 동반한 선천성 심기형 환아들에서 술후 조기 혈류역학적 변화에 대한 연구)

  • Kim, Yong-Jin;Kim, Gi-Bong
    • Journal of Chest Surgery
    • /
    • v.23 no.1
    • /
    • pp.32-40
    • /
    • 1990
  • Surgical correction of congenital cardiac defects in infants and children with an elevated pulmonary arterial pressure or pulmonary vascular resistance carries a significant early postoperative mortality. And accurate assessments of cardiac output is critically important in these patients. From April 1988 through September 1989, serial measurements of cardiac index, ratio of pulmonary-systemic systolic pressure, ratio of pulmonary-systemic resistance, central venous pressure, left atrial pressure, and urine output during the first 48 hours after the cardiac operation were made in 30 congenital cardiac defects associated with pulmonary hypertension. Cardiac index showed significant increase only after 24 hour postoperatively and this low cardiac performance in the early postoperative period should be considered when postoperative management is being planned in the risky patients. There were no variables which showed any significant correlation with cardiac index. In 12 cases[40%], pulmonary hypertensive crisis developed during the 48 hours postoperatively, and they were treated with full sedation, hyperventilation with 100 % 0y and pulmonary vasodilator infusion. In all patient with preoperative pulmonary hypertension, surgical placement of a pulmonary artery catheter is desirable to allow prompt diagnosis of pulmonary hypertensive crisis and to monitor subsequent therapy.

  • PDF

Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

  • Nong, Lidan;Ma, Jue;Zhang, Guangyan;Deng, Chunyu;Mao, Songsong;Li, Haifeng;Cui, Jianxiu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.441-447
    • /
    • 2016
  • Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (${\alpha}_2$-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of $10^{-8}{\sim}10^{-6}mol/L$, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or $3{\times}10^{-9}mmol/L$) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial ${\alpha}_2$-adrenoceptor and nitric oxide synthase.

Pulmonary Thromboembolectomy of Chronic Pulmonary Thromboembolism (만성 폐전색증의 전색 제거술 치험 -1례 보고-)

  • 문석환
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.911-917
    • /
    • 1988
  • Pulmonary thromboembolism originated most commonly from the venous thrombus, especially deep vein thrombus in the leg, which migrated to and occluded the pulmonary vasculatures. The failure of clot lysis and repeated embolic episodes resulted in the hemodynamic compromise -that is- in the increasing in the pulmonary vascular resistance, which would cause the right ventricle failure[Car Pulmonale]. Under the cardiopulmonary bypass, 20 year old male patient was treated successfully by thromboembolectomy of pulmonary thromboembolism with pulmonary hypertension, which originated from the deep vein thrombus in the leg. The results of radiologic studies and clinical evaluations were excellent in that the postoperative lung perfusion scan showed the newly increased perfusion of post-embolectomy territories and in the arterial blood gas finding of 76 from 66[mmHg] in PaO2. The patient was uneventful and discharged on postop. $ 14 days with anticoagulant continued.

  • PDF

Eisenmenger syndrome: report of 3 cases (Eisenmenger 증후군 3례 보)

  • Song, Won-Yeong;Lee, Jong-Tae;Lee, Gyu-Tae
    • Journal of Chest Surgery
    • /
    • v.17 no.2
    • /
    • pp.250-256
    • /
    • 1984
  • Eisenmenger syndrome is a condition which systemic arterial blood oxygen unsaturation occurs if obstruction in the pulmonary capillaries raises the pulmonary vascular resistance and pulmonary arterial pressure to or beyond systemic levels and then a significant right to left shunt develops across a preexisting cardiac septal defect or an aortopulmonary communication-We have experienced 3 cases of similar condition. Case I is 24 year old man who has had cyanosis and dyspnea on exertion since childhood. His pulmonary arterial pressure was 110/80mmHg. He was operated under diagnosis of the mitral stenosis and tetralogy of Fallot, but it was finally discovered that he had patent ductus arteriosus and ventricular defect was closed with perforated prosthetic patch, but the patient expired due to right heart failure low cardiac output. Case II was 16 year old female who had pulmonary hypertension of 110/85mmHg. She was diagnosed as Eisenmenger syndrome combining with atrial septal defect and patent ductus arteriosus. Case III was 20 year old male. His pulmonary arterial pressure was 110/70mmHg and the underlying defect was patent ductus arteriosus.

  • PDF

Medeical Therapy For Pulmonary Arterial Hypertention (폐동맥고혈압에서 폐혈관계 작용약물)

  • Choi, Hye Sook;Lee, Sang Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.2
    • /
    • pp.142-150
    • /
    • 2006
  • Pulmonary arterial hypertension (PAH) is often difficult to diagnose and challenging to treat. Untreated, it is characterized by a progressive increase in pulmonary vascular resistance leading to right ventricular failure and death. The past decade has seen remarkable improvements in therapy, driven largely by the conduct of randomized controlled trials. Still, the selection of most appropriate therapy is complex, and requires familiarity with the disease process, evidence from treatment trials, complicated drug delivery systems, dosing regimens, side effects, and complications. We tried to provide evidence-based treatment recommendations for physicians involved in the care of these complex patients. Due to the complexity of the diagnostic evaluation required, and the treatment options available, it is strongly recommended that consideration be given to referral of patients with PAH to a specialized center.

Effect of Ketanserin and Positive End Expiratory Pressure Ventilation on Hemodynamics and Gas Exchange in Experimental Acute Pulmonary Embolism (실험적 급성 폐동맥색전증에서 Ketanserin과 Positive End Expiratory Pressure Ventilation이 혈류역학 및 환기에 미치는 영향)

  • Lee, Sang-Do;Lee, Young-Hyun;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.135-146
    • /
    • 1993
  • Background: In acute pulmonary embolism it has been postulated that the constriction of bronchi and pulmonary artery secondary to neurohumoral response plays an important role in cardiopulmonary dysfunction in addition to the mechanical obstruction of pulmonary artery. Serotonin is considered as the most important mediator. Positive end expiratory pressure (PEEP) stimulates $PGI_2$ secretion from the vascular endothelium, but its role in acute pulmonary embolism is still in controversy. Methods: To study the cardiopulmonary effect and therapeutic role of Ketanserin, selective antagonist of 5-HT2 receptor, and PEEP in acute pulmonary embolism experimental acute pulmonary embolism was induced in dogs with autologous blood clot. The experimental animals were divided into 3 groups, that is control group, Ketanserin injection group and PEEP application group. Results: Thirty minutes after embolization, mean pulmonary arterial pressure and pulmonary vascular resistance increased and cardiac output decreased. $PaO_2,\;P\bar{v}O_2$ and oxygen transport decreased and physiological shunt and $PaCO_2$ increased. After injection of Ketanserin, comparing with control group, mean pulmonary arterial pressure, pulmonary vascular resistance and physiological shunt decreased, while cardiac output, $PaO_2$ and oxygen transport increased. All these changes sustained till 4 hours after embolization. After PEEP application pulmonary vascular resistance, $PaO_2$ and $PaCO_2$ increased, while physiological shunt, cardiac output and oxygen transport decreased. After discontinuation of PEEP, mean pulmonary arterial pressure and pulmonary vascular resistance decreased and were lower than control group, while $PaO_2$ and cardiac output increased and higher than control group. $PaCO_2$ decreased but showed no significant difference comparing with control group. Conclusion: It can be concluded that Ketanserin is effective for the treatment of acute pulmonary embolism. With PEEP hemodynamic status deteriorated, but improved better than control group after discontinuation of PEEP. Thus PEEP may be applied carefully for short period in acute pulmonary embolism if the hemodynamic status is tolerable.

  • PDF

Impact of Pulmonary Vascular Compliance on the Duration of Pleural Effusion Duration after Extracardiac Fontan Procedure (수술 전 폐혈관 유순도가 심장 외 도판을 이용한 Fontan 수술 후 늑막 삼출 기간에 미치는 영향)

  • Yun Tae-Jin;Im Yu-Mi;Song Kwang-Jae;Jung Sung-Ho;Park Jeong-Jun;Seo Dong-Man;Lee Moo-Song
    • Journal of Chest Surgery
    • /
    • v.39 no.8 s.265
    • /
    • pp.579-587
    • /
    • 2006
  • Background: Preoperative risk analysis for Fontan candidates is still less than optimal in that patients with apparently low risks may have poor surgical outcome; prolonged pleural drainage, protein losing enteropathy, pulmonary thromboembolism and death. We hypothesized that low pulmonary vascular compliance (PVC) is a risk factor for prolonged pleural effusion drainage after the Fontan operation. Material and Method: A retrospective review of 96 consecutive patients who underwent the Extracardiac Fontan procedures (median age: 3.9 years) was performed. Fontan risk score (FRS) was calculated from 12 categorized preoperative anatomic and physiologic variables. PVC $(mm^2/m^2{\cdot}mmHg)$ was defined as pulmonary artery index $(mm^2/m^2)$ divided by total pulmonary resistance $(W.U{\cdot}/m^2)$ and pulmonary blood flow $(L/min/m^2)$ based on the electrical circuit analogue of the pulmonary circulation. Chest tube indwelling time was log-transformed (log indwelling time, LIT) to fit normal distribution, and the relationship between preoperative predictors and LIT was analyzed by multiple linear regression. Result: Preoperative PVC, chest tube indwelling time and LIT ranged from 6 to 94.8 $mm^2/mmHg/m^2$ (median: 24.8), 3 to 268 days (median: 20 days), and 1.1 to 5.6 (mean: 2.9, standard deviation: 0.8), respectively. FRS, PVC, cardiopulmonary bypass time (CPB) and central venous pressure at postoperative 12 hours were correlated with LIT by univariable analyses. By multiple linear regression, PVC (p=0.0018) and CPB (p=0.0024) independently predicted LIT, explaining 21.7% of the variation. The regression equation was LIT=2.74-0.0158 PVC+0.00658 CPB. Conclusion: Low pulmonary vascular compliance is an important risk factor for prolonged pleural effusion drainage after the extracardiac Fontan procedure.