Impact of Pulmonary Vascular Compliance on the Duration of Pleural Effusion Duration after Extracardiac Fontan Procedure

수술 전 폐혈관 유순도가 심장 외 도판을 이용한 Fontan 수술 후 늑막 삼출 기간에 미치는 영향

  • Yun Tae-Jin (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Im Yu-Mi (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Song Kwang-Jae (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Jung Sung-Ho (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Park Jeong-Jun (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Seo Dong-Man (Division of Pediatric Cardiac Surgery, Asan Medical Center, College of Medicine, University of Ulsan) ;
  • Lee Moo-Song (Department of Preventive Medicine, College of Medicine, University of Ulsan)
  • 윤태진 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 임유미 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 송광재 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 정성호 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 박정준 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 서동만 (울산대학교 의과대학 서울아산병원 소아심장외과) ;
  • 이무송 (울산대학교 의과대학 예방의학교실)
  • Published : 2006.08.01

Abstract

Background: Preoperative risk analysis for Fontan candidates is still less than optimal in that patients with apparently low risks may have poor surgical outcome; prolonged pleural drainage, protein losing enteropathy, pulmonary thromboembolism and death. We hypothesized that low pulmonary vascular compliance (PVC) is a risk factor for prolonged pleural effusion drainage after the Fontan operation. Material and Method: A retrospective review of 96 consecutive patients who underwent the Extracardiac Fontan procedures (median age: 3.9 years) was performed. Fontan risk score (FRS) was calculated from 12 categorized preoperative anatomic and physiologic variables. PVC $(mm^2/m^2{\cdot}mmHg)$ was defined as pulmonary artery index $(mm^2/m^2)$ divided by total pulmonary resistance $(W.U{\cdot}/m^2)$ and pulmonary blood flow $(L/min/m^2)$ based on the electrical circuit analogue of the pulmonary circulation. Chest tube indwelling time was log-transformed (log indwelling time, LIT) to fit normal distribution, and the relationship between preoperative predictors and LIT was analyzed by multiple linear regression. Result: Preoperative PVC, chest tube indwelling time and LIT ranged from 6 to 94.8 $mm^2/mmHg/m^2$ (median: 24.8), 3 to 268 days (median: 20 days), and 1.1 to 5.6 (mean: 2.9, standard deviation: 0.8), respectively. FRS, PVC, cardiopulmonary bypass time (CPB) and central venous pressure at postoperative 12 hours were correlated with LIT by univariable analyses. By multiple linear regression, PVC (p=0.0018) and CPB (p=0.0024) independently predicted LIT, explaining 21.7% of the variation. The regression equation was LIT=2.74-0.0158 PVC+0.00658 CPB. Conclusion: Low pulmonary vascular compliance is an important risk factor for prolonged pleural effusion drainage after the extracardiac Fontan procedure.

배경 : 단심실 교정을 시행함에 있어 수술 전 위험 인자가 많지 않다고 판단되는 경우에도 수술 후 장기간의 흉관 배액, 단백 소모성 장질환, 폐혈관 색전증, 사망 등의 불량한 결과를 얻을 수 있다. 이러한 측면에서, 단심실 교정에 대한 기존의 위험 인자 분석은 수술 결과를 예측함에 있어 미흡한 점이 있다고 할 수 있다. 저자 등은 폐혈관 유순도를 새로이 정의하고, 낮은 폐혈관 유순도가 수술 후 흉관 배액 기간을 길게 한다는 가설을 세워 이를 증명하고자 하였다. 대상 및 방법 : 2002년 1월부터 2005년 5월까지 심장 외 도관을 이용한 단심실 교정을 받은 총 96 명의 환자들의 기록을 후행적으로 분석하였다. 동 기간 중 기존의 단심실 교정을 심장 외 도관으로 교체한 경우는 연구 대상에서 제외하였다. 수술 후 늑막 삼출 기간의 위험 인자 분석에는 12가지 수술 전 위험 인자들을 지수화한 Fontan risk score (FRS) 및 기타 다양한 수술 전, 수술 중 위험 인자들을 포함시켰으며, 본 연구를 위하여 전기로 analogue를 폐순환에 적용하여 계산된 폐혈관 유순도 (pulmonary vascular compliance, PVC, $mm^2/mmHg/m^2)$를 위험인자로 추가하였다. 전기 회로 analogue에 의하면 PVC는 폐동맥 지수 (pulmonary artery index, $mm^2/m^2$)를 총폐저항 (total pulmonary resistance, Wood $Unit{\cdot}m^2$) 및 폐 혈류량 (pulmonary blood flow, $L/min/m^2$) 으로 나눈 값으로 정의되며, 이는 폐혈관의 크기와 저항, 폐 혈류량 등을 동시에 고려하는 변수라고 할 수 있다. 결과 변수인 흉관 거치 기간은 자연로그를 취해 정규 분포화하고 이를 log indwelling time (LIT)으로 정의하였으며, 분석 대상 위험 인자들과 LIT 의 관계에 대한 다중 선형 회귀분석을 시행하였다. 결과 : 조기 사망은 없었고 만기 사망은 4 명 (4.2%)이었으며, 단심실 교정시 fenestration이 추가된 경우는 1예 있었다(1 %). 수술 전 PVC, 흉관 거치 기간, LIT는 각각 ${6{\sim}94.8\;mm^2/mmHg/m^2}$ (중간값:24.8), $3{\sim}268$일 ( 간값 : 20 일 ), $1.1{\sim}5.6$ ( 평균: 2.9, 표준 편차: 0.8) 이었다. 단변 수 분석상 FRS, PVC, 체외 순환시간 (CPB) 및 술 후 12 시간째의 중심 정맥압 등이 LIT와 연관되었으나, 다변수 분석상 PVC (p=0.0018) 및 CPB (p=0.0024)만이 독립적으로 LIT를 예측하였다. 두 변수는 LIT 변이에 대하여 21.7%의 설명력이 있었으며, 두 변수를 이용한 회귀 분석식은 다음과 같았다. LIT=2.74-0.0158 PVC+0.00658 CPB. 결론: 새로이 정의된 폐혈관 유순도는 심장 외 도관을 이용한 단심실 교정 후의 흉관 거치 기간을 결정하는 중요한 예측 인자로서, 수술 전 위험 인자 분석에 유용하게 사용될 수 있다.

Keywords

References

  1. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971;26:240-8 https://doi.org/10.1136/thx.26.3.240
  2. Fisher DJ, Geva T, Felters TF, et al. Lifelong management of patients with a single functional ventricle: a protocol. Tex Heart Inst J 1995;22:284-95
  3. Senzaki H, Isoda T, Ishzawa A, Hishi T. Reconsideration of criteria for the fontan operation: influence of pulmonary artery size on postoperative hemodynamics of the Fontan operation. Circulation 1994;89:1196-202 https://doi.org/10.1161/01.CIR.89.3.1196
  4. Mitchell MB, Campbell DN, Ivy D, et al. Evidence of pulmonary vascular disease after heart transplantation for Fontan circulation failure. J Thorac Cardiovasc Surg 2004; 128:693-702 https://doi.org/10.1016/j.jtcvs.2004.07.013
  5. Fontan F, Fernandez G, Costa F, et al. The size of the pulmonary arteries and the results of the Fontan operation. J Thorac Cardiovasc Surg 1989;98:711-24
  6. Bridges ND, Farrell Jr PE, Pigott III JD, Norwood WI, Chin AJ. Pulmonary artery index: a nonpredictor of operative survival in patients undergoing modified Fontan repair. Circulation 1989;80(suppl I):I216-21
  7. Girod DA, Rice MJ, Mair DD, Julsrud PR, Puga FJ, Danielson GK. Relationship of pulmonary artery size to mortality in patients undergoing the Fontan operation. Circulation 1985;(suppl II):II93-6
  8. Reuben SR. Compliance of the human pulmonary arterial system in disease. Circ Res 1971;29:40-50 https://doi.org/10.1161/01.RES.29.1.40
  9. Senzaki H, Kato H, Akagi M, Hishi T. New criteria for the radical repair of congenital heart disease with pulmonary hypertension: in oder to avoid postoperative residual pulmonary hypertension. Jpn Hearrt H 1995;36:49-59 https://doi.org/10.1536/ihj.36.49
  10. Basnet NB, Awa S, Hishi T, Yanagisawa M. Pulmonary arterial compliance in children with atrial and ventricular septal defect. Heart Vessels 2000;15:61-9 https://doi.org/10.1007/s003800070033
  11. Brown KA, Ditchey RV. Human right ventricular end-systolic pressure-volume relation defined by maximal elastance. Circulation 1988;78:81-91 https://doi.org/10.1161/01.CIR.78.1.81
  12. Chemla D, Hebert JL, Coirault C, Salmeron S, Zamani K, Lecarpentier Y. Matching dicrotic notch and mean pulmonary artery pressures: implications for effective arterial elastance. Am J Physiol 1996:271:H1287-95
  13. Weinberg CE, Hertzberg JR, Ivy D, et al. Extraction of pulmonary vascular compliance, pulmonary vascular resistance, and right ventricular work from single-pressure and Doppler flow measurement in children with pulmonary hypertension: a new method for evaluating reactivity-in vitro and clinical studies. Circulation 2004;110:2609-17 https://doi.org/10.1161/01.CIR.0000146818.60588.40
  14. Deswysen B, Charlier AA, Gevers M. Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med & Biol Eng 1980;18:153-66 https://doi.org/10.1007/BF02443290
  15. Huez S, Brimioulle S, Naeije R, Vachiery JL. Feasibility of routine pulmonary arterial impedance measurements in pulmonary hypertension. Chest 2004;125:1211-28
  16. De Zelicourt DA, Pekkan K, Willis L, et al. In vitro flow analysis of a patient-specific intraatrial total cavopulmonary connection. Ann Thorac Surg 2005;79:2094-102 https://doi.org/10.1016/j.athoracsur.2004.12.052
  17. Reddy VM, Petrossian E, McElhinney DB, Moore P, Teitel DF, Hanley FL. One-stage complete unifocalization in infancts: when should the ventricular septal defect be closed? J Thorac Cardiovasc Surg 1997;113:858-68 https://doi.org/10.1016/S0022-5223(97)70258-7
  18. Kitagawa T, Hori T, Chikugo F, et al. Direct intraoperative measurements of aortic and pulmonary blood flows in patients with severe pulmonary artery hypertension. J Cardiovasc Surg 2000;41:683-9
  19. Gupta A, Dagger C, Behera S, Ferraro M, Wells W, Starnes V. Risk factors for persistent pleural effusions after the extracardiac Fontan procedure. J Thorac Cardiovasc Surg 2004; 127:1664-9 https://doi.org/10.1016/j.jtcvs.2003.09.011
  20. Chowdhury UK, Airan B, Kothari SS, et al. Specific issues after extracardiac Fontan operation: ventricular function, growth potential, arrhythmia, and thromboembolism. Ann Thorac Surg 2005;80:665-72 https://doi.org/10.1016/j.athoracsur.2005.02.024
  21. Ovroutski S, Alexi-Meskishvili V, Ewert P, Nurnberg JH, Hetzer R, Lange PE. Early and medium-term results after modified Fontan operation in adults. Eur J Cardiothorac Surg 2003;23:311-6 https://doi.org/10.1016/s1010-7940(02)00829-1
  22. Jacobs ML. The Fontan operation, thromboembolism and anticoagulation: a reappraisal of the single bullet theory. J Thorac Cardiovasc Surg 2005;129:491-5 https://doi.org/10.1016/j.jtcvs.2004.09.017
  23. Jacobs ML, Pourmoghadam KK, Geary EM, et al. Fontan's operation: is aspirin enough- is coumadin too much- Ann Thorac Surg 2002; 73:64-8 https://doi.org/10.1016/S0003-4975(01)03068-5
  24. Kaulitz R, Ziemer G, Rauch R, et al. Prophylaxis of thromboembolic complications after the Fontan operation (total cavopulmonary anastomosis). J Thorac Cardiovasc Surg 2005; 29:569-75
  25. Kavarana MN, Pegni S, Recto MR, et al. Seven-year clinical experience with the extracaridac pedicled pericardial Fontan operation. Ann Thorac Surg 2005;80:37-43 https://doi.org/10.1016/j.athoracsur.2005.01.038
  26. Mahnke CB, Boyle GJ, Janosky JE, Siewers RD, Pigula FA. Anticoagulation and incidence of late cerebrovascular accidents following the Fontan procedure. Pediatr Cardiol 2005; 26:56-61 https://doi.org/10.1007/s00246-003-0684-z
  27. Monagle P, Karl TR. Thromboembolic problems after the Fontan operation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2002;5:36-47 https://doi.org/10.1053/pcsu.2002.29716
  28. Uemura H, Yagihara T, Kawashima Y, et al. What factors affect ventricular performance after Fontan-type operation? J Thorac Cardiovasc Surg 1995;110:405-15 https://doi.org/10.1016/S0022-5223(95)70237-7
  29. Ghaferi AA, Hutchins GM. Progression of liver pathology in patients undergoing the Fontan procedure: chronic passive congestion, cardiac cirrhosis, hepatic adenoma, and hepatocellular carcinoma. J Thorac Cardiovasc Surg 2005;129: 1348-2 https://doi.org/10.1016/j.jtcvs.2004.10.005
  30. Shuichi S, Uemura H, Kagisaki K, Koh M, Yagihara T, Kitamura S. The off-pump procedure by simply cross-clamping the inferior caval vein. Ann Thorac Surg 2005;79:2083-8 https://doi.org/10.1016/j.athoracsur.2004.11.056