• 제목/요약/키워드: Pulmonary injury

검색결과 331건 처리시간 0.031초

Tracheobronchial Polyps Following Thermal Inhalation Injury

  • Shin, Beomsu;Kim, Mikyeong;Yoo, Hongseok;Kim, Se Jin;Lee, Ji Eun;Jeon, Kyeongman
    • Tuberculosis and Respiratory Diseases
    • /
    • 제76권5호
    • /
    • pp.237-239
    • /
    • 2014
  • The early pulmonary consequences of inhalation injury are well documented; however, little is known about delayed pulmonary complications following thermal inhalation injury. Although thermal injury below the vocal cords is rare because of effective heat dissipation in the upper airway, inflammatory endobronchial polyps have previously been reported as a delayed complication associated with inhalation injury. We report an extraordinary case of tracheobronchial polyps in patients with smoke inhalation injury. This report shows the delayed development and natural course of tracheobronchial polyps following thermal injury.

Mild Traumatic Brain Injury and Subsequent Acute Pulmonary Inflammatory Response

  • Lim, Seung Hyuk;Jung, Harry;Youn, Dong Hyuk;Kim, Tae Yeon;Han, Sung Woo;Kim, Bong Jun;Lee, Jae Jun;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.680-687
    • /
    • 2022
  • Objective : The influence of moderate-to-severe traumatic brain injury (TBI) on acute pulmonary injury is well established, but the association between acute pulmonary injury and mild TBI has not been well studied. Here, we evaluated the histological changes and fluctuations in inflammatory markers in the lungs to determine whether an acute pulmonary inflammatory response occurred after mild TBI. Methods : Mouse models of mild TBI (n=24) were induced via open-head injuries using a stereotaxic impactor. The brain and lungs were examined 6, 24, and 72 hours after injury and compared to sham-operated controls (n=24). Fluoro-Jade B staining and Astra blue and hematoxylin staining were performed to assess cerebral neuronal degeneration and pulmonary histological architecture. Quantitative real-time polymerase chain reaction analysis was done to measure inflammatory cytokines. Results : Increased neuronal degeneration and the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were observed after mild TBI. The IL-6, TNF-α, and TGF-β levels in mice with mild TBI were significantly different compared to those of sham-operated mice 24 hours after injury, and this was more pronounced at 72 hours. Mild TBI induced acute pulmonary interstitial edema with cell infiltration and alveolar morphological changes. In particular, a significant infiltration of mast cells was observed. Among the inflammatory cytokines, TNF-α was significantly increased in the lungs at 6 hours, but there was no significant difference 24 and 72 hours after injury. Conclusion : Mild TBI induced acute pulmonary interstitial inflammation and alveolar structural changes, which are likely to worsen the patient's prognosis.

The Change of Secretory Activity of the Alveolar Type ll Cell During Acute Alveolar Injury Induced by N-Nitroso-N-Methylurethane

  • Lee, Young-Man;Bang, In-Sook;Lee, Suck-Kang
    • The Korean Journal of Physiology
    • /
    • 제28권1호
    • /
    • pp.71-77
    • /
    • 1994
  • In the animal model of acute respiratory distress syndrome (ARDS) induced by N-nitroso-N-methylurethane (NNNMU) the secretory activity of alveolar type H cells during acute alveolar injury was investigated by determining phospholipid and pulmonary surfactant associated proteins in crude surfactant. The mechanism of the secretory change was studied by determination of DNA and RNA levels in the lung tissue. After induction of acute alveolar injury with NNNMU, pulmonary hemorrhage, atelectasis and gross hypertrophy were observed. Seven days after NNNMU treatment the level of total DNA in lung homogenate was increased markedly indicating that a hypertrophy was induced by cellular proliferation. Although the total DNA level increased, the RNA/DNA ratio was gradually decreased after NNNMU treatment. Seven days after NNNMU treatment the RNA/DNA ratio returned to the normal control level. During the acute alveolar injury, phospholipid and surfactant associated proteins were reduced significantly as compared with the control, implying that the secretory activity of alveolar type II cells was altered during acute alveolar injury induced by NNNMU. The protein content in crude surfactant during peak injury(7 days after NNNMU) was decreased significantly but phospholipid/protein ratios were identical in both control and NNNMU treatment groups. SDS-PAGE of proteins in crude pulmonary surfactant showed a decrease in major surfactant associated protein(M.W. 38,000) during acute alveolar injury. The present study may suggest that while alveolar type H cells proliferate markedly, transcription of alveolar type ll cell gene was inhibited by an unknown mechanism such as DNA methylation induced by NNNMU. Such an inhibition of transcriptional activity is thought to be associated with the decreased secretory activity of alveolar type ll cells, which may lead to pulmonary atelectasis and edema during the acute alveolar injury.

  • PDF

흰쥐에서 내독소로 유도된 급성폐손상에서 surfactant내 PAF의 역할 (PAF in Pulmonary Surfactant Contributes to Neutrophilic Oxidative Stress-Induced Acute Lung Injury of Rats Given LPS Intratracheally)

  • 이영만
    • 생명과학회지
    • /
    • 제22권10호
    • /
    • pp.1352-1358
    • /
    • 2012
  • 흰쥐에서 대장균(E.coli : E0127;B8)의 내독소(lipopolysaccharide)로 급성 폐손상을 유도하고 이때 폐장 내 호중구성 respiratory burst에 따른 폐장조직의 변화 및 폐포 내로의 단백질 유출을 확인하였다. Pulmonary surfactant를 분리하고 이때 surfactant대사의 변화와 surfactant내의 PAF함량이 증가한 사실도 확인하였다. Surfactant내의 PAF함량의 증가는 폐포 내로의 호중구의 이동 및 그에 따른 산소기 생성의 증가로 폐장 내의 모세혈관 및 제1형 폐포세포의 직접적 손상의 원인으로 생각되었고, 이러한 surfactant내의 PAF의 증가가 실질적으로 급성 폐손상의 치료를 어렵게 하는 원인의 하나로 생각되었다.

The Inhibitory Effect of Bamboo Culm Extract on the Development of Pulmonary Inflammation in Pristane-Induced Lupus Mice

  • Chae, Byeong-Suk;Kim, Dae-Keun;Eun, Jae-Soon;Kwon, Gi-Sung;Shin, Tae-Yong
    • Natural Product Sciences
    • /
    • 제16권4호
    • /
    • pp.245-250
    • /
    • 2010
  • Pulmonary pathogenesis in lupus is characterized by interstitial inflammation and vasculitis in lungs. We investigated whether bamboo culm extract (BC) attenuates pulmonary inflammation and lung injury in pristane-induced lupus mice. The pristane-induced lupus mice and healthy mice were administrated with BC 0.5 ml/kg or PBS orally once a day for 14 days. Our results demonstrated that BC significantly attenuated levels of bronchoalveolar lavage (BAL) IL-6, IL-10, IFN-$\gamma$, $PGE_2$ and VEGF, and pulmonary vascular permeability in pristane-induced lupus mice. Therefore, these findings suggest that BC may inhibit development of pulmonary inflammation and lung injury in lupus.

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

황견에서 폐장의 산소가 온열 허혈후 재관류 시폐손상에 미치는 영향 (Effect Oxygen in Inflation Gas for Warm Ischemia-reperfusion Injury in the Lung of a Mongrel Dog)

  • 성숙환;김현조;김영태
    • Journal of Chest Surgery
    • /
    • 제33권2호
    • /
    • pp.125-131
    • /
    • 2000
  • Background: Hyperinflation during lung ischemia has been known to improve pulmonary functions after reperfusion which may be exerted through a pulmonary vasodilation and avoidance of atelectasis by an increased surfactant release and been known whether the improvement of pulmonary function was the effect of hyperinflation itself or the oxygen content in inflation gas. Therefore we attempted to clarify the effect of hyperinflation with oxygen in pulmonary inflation gas during warm ischemia on pulmonary function after reperfusion to solve the problem of ischemia-reperfusion injury after lung transplantation. Material and Method: sixteen mongrel dogs were randomly divided into two groups: the left lung was inflated to 30-35 cm H2O with 100% oxygen in oxygen group and 100% nitrogen in nitrogen group. The inflated left lung was maintained with warm ischemia for 100 minutes. Arterial and mixed venous blood gas analysis and hemodynamics were measured before ischemia and 30, 60, 120, 180 and 240 minutes afer reperfusion. Lung biopsy was taken for the measurement of lung water content after the end of reperfusion. Result: In oxygen group arterial oxygen tension the difference of arterial and mixed venous oxygen tension and the difference of alveolar-arterial oxygen tension at 30-minute after reperfusion were not significantly different from those before ischemia and were stable during the 40hour reperfusion. However in nitrogen group these values were significantly deteriorated at 30-minute after reperfusion. there was no significant difference between two groups in hemodynamic data peak airway pressure and lung water content. Conclusion : The results indicated that the oxygenation one of the most important pulmonary functions was improved by pulmonary inflation with 100% oxygen during warm ischemia but the hemodynamics were not. Oxygen as a metabolic substrate during warm ischenia was believed to make the pulmonary tissues to maintain aerobic metabolism and to prevent ischemic damage of alveoli and pulmonary capillary.

  • PDF

A Mitochondrial Perspective of Chronic Obstructive Pulmonary Disease Pathogenesis

  • Kang, Min-Jong;Shadel, Gerald S.
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권4호
    • /
    • pp.207-213
    • /
    • 2016
  • Chronic obstructive pulmonary disease (COPD) encompasses several clinical syndromes, most notably emphysema and chronic bronchitis. Most of the current treatments fail to attenuate severity and progression of the disease, thereby requiring better mechanistic understandings of pathogenesis to develop disease-modifying therapeutics. A number of theories on COPD pathogenesis have been promulgated wherein an increase in protease burden from chronic inflammation, exaggerated production of reactive oxygen species and the resulting oxidant injury, or superfluous cell death responses caused by enhanced cellular injury/damage were proposed as the culprit. These hypotheses are not mutually exclusive and together likely represent the multifaceted biological processes involved in COPD pathogenesis. Recent studies demonstrate that mitochondria are involved in innate immune signaling that plays important roles in cigarette smoke-induced inflammasome activation, pulmonary inflammation and tissue remodeling responses. These responses are reviewed herein and synthesized into a view of COPD pathogenesis whereby mitochondria play a central role.

다발성 외상환자에서 폐좌상과 심근좌상의 상관관계 (Correlation Between Pulmonary Contusion and Myocardial Contusion in Patients with Multiple Injuries)

  • 류지호;염석란;정진우;민문기;박맹렬;김용인;한상균;박성욱
    • Journal of Trauma and Injury
    • /
    • 제24권1호
    • /
    • pp.31-36
    • /
    • 2011
  • Purpose: This study was conducted to evaluate the correlations among pulmonary contusion severity, trauma score and cardiac troponin I (cTnI) level. Methods: We prospectively evaluated patients with multiple injuries who had been admitted to the emergency department (ED) from July 2007 to July 2008. We first measured the total creatinine kinase (CK), the MB fraction of CK (CK-MB), TnI, and myoglobin within 2 hours after the injury. We then checked the electrocardiogram, x-ray, and computed tomography (CT) results. Finally, we assessed the injuries as variables and then compared the results for patients with elevated TnI levels (group A) and patients whose TnI levels fell within the normal range (group B). Results: Eighty-six of the 92 patients admitted to the ED were enrolled. The pulmonary contusion score (PCS) was well correlated with $PaO_2/FiO_2$. TnI levels were correlated with PCS. When TnI levels were above 0.86 ng/ml, the mortality was estimated with 100% sensitivity and 86.1% specificity. Conclusion: Pulmonary contusion severity is correlated with TnI level. When the PCS is high and the cTnI level is elevated in multiple-injury patients, we recommend continuous cardiac monitoring and further evaluation