DOI QR코드

DOI QR Code

A Mitochondrial Perspective of Chronic Obstructive Pulmonary Disease Pathogenesis

  • Kang, Min-Jong (Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine) ;
  • Shadel, Gerald S. (Department of Pathology, Yale University School of Medicine)
  • Received : 2016.04.05
  • Accepted : 2016.05.26
  • Published : 2016.10.05

Abstract

Chronic obstructive pulmonary disease (COPD) encompasses several clinical syndromes, most notably emphysema and chronic bronchitis. Most of the current treatments fail to attenuate severity and progression of the disease, thereby requiring better mechanistic understandings of pathogenesis to develop disease-modifying therapeutics. A number of theories on COPD pathogenesis have been promulgated wherein an increase in protease burden from chronic inflammation, exaggerated production of reactive oxygen species and the resulting oxidant injury, or superfluous cell death responses caused by enhanced cellular injury/damage were proposed as the culprit. These hypotheses are not mutually exclusive and together likely represent the multifaceted biological processes involved in COPD pathogenesis. Recent studies demonstrate that mitochondria are involved in innate immune signaling that plays important roles in cigarette smoke-induced inflammasome activation, pulmonary inflammation and tissue remodeling responses. These responses are reviewed herein and synthesized into a view of COPD pathogenesis whereby mitochondria play a central role.

Keywords

References

  1. Senior RM, Shapiro SD. Chronic obstructive pulmonary disease: epidemiology, pathophysiology, and pathogenesis. In: Fishman AP, Elias JA, Fishman JA, Grippi MA, Kaiser LR, Senior RM, editors. Fishman's pulmonary diseases and disorders. 3rd ed. New York: McGraw-Hill, Inc.; 1998. p. 659-81.
  2. Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009;4:435-59. https://doi.org/10.1146/annurev.pathol.4.110807.092145
  3. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global burden of disease and risk factors. Washington DC: The International Bank for Reconstruction and Development/The World Bank Group; 2006.
  4. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012;148:1145-59. https://doi.org/10.1016/j.cell.2012.02.035
  5. Eriksson S. Pulmonary emphysema and alpha1-antitrypsin deficiency. Acta Med Scand 1964;175:197-205.
  6. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2005;2:50-60. https://doi.org/10.1513/pats.200411-056SF
  7. Larsson K. Aspects on pathophysiological mechanisms in COPD. J Intern Med 2007;262:311-40. https://doi.org/10.1111/j.1365-2796.2007.01837.x
  8. Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 2011;6:413-21.
  9. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 2007;176:532-55. https://doi.org/10.1164/rccm.200703-456SO
  10. Niewoehner DE, Kleinerman J, Rice DB. Pathologic changes in the peripheral airways of young cigarette smokers. N Engl J Med 1974;291:755-8. https://doi.org/10.1056/NEJM197410102911503
  11. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al. Antielastin autoimmunity in tobacco smokinginduced emphysema. Nat Med 2007;13:567-9. https://doi.org/10.1038/nm1583
  12. Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009;360:2445-54. https://doi.org/10.1056/NEJMra0804752
  13. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011;378:1015-26. https://doi.org/10.1016/S0140-6736(11)60988-4
  14. Kang MJ, Choi JM, Kim BH, Lee CM, Cho WK, Choe G, et al. IL-18 induces emphysema and airway and vascular remodeling via IFN-gamma, IL-17A, and IL-13. Am J Respir Crit Care Med 2012;185:1205-17. https://doi.org/10.1164/rccm.201108-1545OC
  15. Kang MJ, Homer RJ, Gallo A, Lee CG, Crothers KA, Cho SJ, et al. IL-18 is induced and IL-18 receptor alpha plays a critical role in the pathogenesis of cigarette smoke-induced pulmonary emphysema and inflammation. J Immunol 2007;178:1948-59. https://doi.org/10.4049/jimmunol.178.3.1948
  16. Dima E, Koltsida O, Katsaounou P, Vakali S, Koutsoukou A, Koulouris NG, et al. Implication of interleukin (IL)-18 in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cytokine 2015;74:313-7. https://doi.org/10.1016/j.cyto.2015.04.008
  17. Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis 2015;10:261-76.
  18. Tuder RM, Yoshida T, Arap W, Pasqualini R, Petrache I. State of the art: cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc 2006;3:503-10. https://doi.org/10.1513/pats.200603-054MS
  19. Yoshida T, Tuder RM. Pathobiology of cigarette smokeinduced chronic obstructive pulmonary disease. Physiol Rev 2007;87:1047-82. https://doi.org/10.1152/physrev.00048.2006
  20. Imai K, Mercer BA, Schulman LL, Sonett JR, D'Armiento JM. Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 2005;25:250-8. https://doi.org/10.1183/09031936.05.00023704
  21. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153:1194-217. https://doi.org/10.1016/j.cell.2013.05.039
  22. Kirkwood TB. Understanding the odd science of aging. Cell 2005;120:437-47. https://doi.org/10.1016/j.cell.2005.01.027
  23. Fukuchi Y. The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc 2009;6:570-2. https://doi.org/10.1513/pats.200909-099RM
  24. Lowery EM, Brubaker AL, Kuhlmann E, Kovacs EJ. The aging lung. Clin Interv Aging 2013;8:1489-96.
  25. Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax 2015;70:482-9. https://doi.org/10.1136/thoraxjnl-2014-206084
  26. Holloway RA, Donnelly LE. Immunopathogenesis of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2013;19:95-102. https://doi.org/10.1097/MCP.0b013e32835cfff5
  27. Scheffler IE. Mitochondria. 2nd ed. Hoboken: Wiley-Liss; 2007.
  28. West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol 2011;11:389-402. https://doi.org/10.1038/nri2975
  29. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015;42:406-17. https://doi.org/10.1016/j.immuni.2015.02.002
  30. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell 2005;120:483-95. https://doi.org/10.1016/j.cell.2005.02.001
  31. Cloonan SM, Choi AM. Mitochondria in lung disease. J Clin Invest 2016;126:809-20. https://doi.org/10.1172/JCI81113
  32. Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012;481:278-86. https://doi.org/10.1038/nature10759
  33. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011;29:707-35. https://doi.org/10.1146/annurev-immunol-031210-101405
  34. Schroder K, Tschopp J. The inflammasomes. Cell 2010;140:821-32. https://doi.org/10.1016/j.cell.2010.01.040
  35. Yoon CM, Nam M, Oh YM, Dela Cruz CS, Kang MJ. Mitochondrial regulation of inflammasome activation in chronic obstructive pulmonary disease. J Innate Immun 2016;8:121-8. https://doi.org/10.1159/000441299
  36. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417:1-13. https://doi.org/10.1042/BJ20081386
  37. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012;13:780-8. https://doi.org/10.1038/nrm3479
  38. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015;163:560-9. https://doi.org/10.1016/j.cell.2015.10.001
  39. Murphy MP. Modulating mitochondrial intracellular location as a redox signal. Sci Signal 2012;5:pe39.
  40. Bhola PD, Letai A. Mitochondria-judges and executioners of cell death sentences. Mol Cell 2016;61:695-704. https://doi.org/10.1016/j.molcel.2016.02.019
  41. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol 2014;16:728-36. https://doi.org/10.1038/ncb3005
  42. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005;122:669-82. https://doi.org/10.1016/j.cell.2005.08.012
  43. Kang MJ, Lee CG, Lee JY, Dela Cruz CS, Chen ZJ, Enelow R, et al. Cigarette smoke selectively enhances viral PAMP- and virus-induced pulmonary innate immune and remodeling responses in mice. J Clin Invest 2008;118:2771-84.
  44. Kang MJ, Yoon CM, Kim BH, Lee CM, Zhou Y, Sauler M, et al. Suppression of NLRX1 in chronic obstructive pulmonary disease. J Clin Invest 2015;125:2458-62. https://doi.org/10.1172/JCI71747
  45. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O'Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 2013;153:1239-51. https://doi.org/10.1016/j.cell.2013.05.016
  46. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 2013;38:225-36. https://doi.org/10.1016/j.immuni.2012.10.020
  47. Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci 2009;122(Pt 17):3161-8. https://doi.org/10.1242/jcs.051193
  48. Arnoult D, Soares F, Tattoli I, Girardin SE. Mitochondria in innate immunity. EMBO Rep 2011;12:901-10. https://doi.org/10.1038/embor.2011.157
  49. Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG, et al. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 2008;451:573-7. https://doi.org/10.1038/nature06501
  50. Allen IC, Moore CB, Schneider M, Lei Y, Davis BK, Scull MA, et al. NLRX1 protein attenuates inflammatory responses to infection by interfering with the RIG-I-MAVS and TRAF6-NFkappaB signaling pathways. Immunity 2011;34:854-65. https://doi.org/10.1016/j.immuni.2011.03.026
  51. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 2012;36:933-46. https://doi.org/10.1016/j.immuni.2012.03.025
  52. Koblansky AA, Truax AD, Liu R, Montgomery SA, Ding S, Wilson JE, et al. The innate immune receptor NLRX1 functions as a tumor suppressor by reducing colon tumorigenesis and key tumor-promoting signals. Cell Rep 2016;14:2562-75. https://doi.org/10.1016/j.celrep.2016.02.064
  53. Vlahos R, Bozinovski S. Role of alveolar macrophages in chronic obstructive pulmonary disease. Front Immunol 2014;5:435.
  54. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol 2013;14:986-95. https://doi.org/10.1038/ni.2705
  55. Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax 2015;70:1189-96. https://doi.org/10.1136/thoraxjnl-2015-207020
  56. Thepen T, Van Rooijen N, Kraal G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med 1989;170:499-509. https://doi.org/10.1084/jem.170.2.499

Cited by

  1. Environmental exposures and chronic obstructive pulmonary disease vol.13, pp.3, 2016, https://doi.org/10.1007/s13273-017-0027-4
  2. ACN9 Regulates the Inflammatory Responses in Human Bronchial Epithelial Cells vol.80, pp.3, 2016, https://doi.org/10.4046/trd.2017.80.3.247
  3. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases vol.18, pp.10, 2016, https://doi.org/10.1038/nrm.2017.68
  4. DNA methylation profiling in peripheral lung tissues of smokers and patients with COPD vol.9, pp.None, 2016, https://doi.org/10.1186/s13148-017-0335-5
  5. Sodium Tanshinone IIA Sulfonate Decreases Cigarette Smoke-Induced Inflammation and Oxidative Stress via Blocking the Activation of MAPK/HIF-1α Signaling Pathway vol.9, pp.None, 2016, https://doi.org/10.3389/fphar.2018.00263
  6. Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease vol.96, pp.12, 2016, https://doi.org/10.1007/s00109-018-1708-8
  7. Handgrip Strength and Pulmonary Disease in the Elderly: What is the Link? vol.10, pp.5, 2016, https://doi.org/10.14336/ad.2018.1226
  8. NLRX1 Is a Multifaceted and Enigmatic Regulator of Immune System Function vol.10, pp.None, 2016, https://doi.org/10.3389/fimmu.2019.02419
  9. Silencing FUNDC1 alleviates chronic obstructive pulmonary disease by inhibiting mitochondrial autophagy and bronchial epithelium cell apoptosis under hypoxic environment vol.120, pp.10, 2016, https://doi.org/10.1002/jcb.29028
  10. Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1 vol.11, pp.24, 2016, https://doi.org/10.18632/aging.102454
  11. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis vol.9, pp.4, 2016, https://doi.org/10.3390/jcm9040978
  12. Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics vol.3, pp.1, 2020, https://doi.org/10.1038/s42003-020-01322-4
  13. Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies vol.476, pp.1, 2016, https://doi.org/10.1007/s11010-020-03926-0
  14. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity vol.270, pp.None, 2016, https://doi.org/10.1016/j.envpol.2020.116242
  15. Nucleotide‐binding domain and leucine‐rich‐repeat‐containing protein X1 deficiency induces nicotinamide adenine dinucleotide decline, mechanistic target of rapamycin activation vol.20, pp.7, 2021, https://doi.org/10.1111/acel.13410