• Title/Summary/Keyword: Pulmonary fibrosis

Search Result 291, Processing Time 0.023 seconds

Prediction of the Development of Pulmonary Fibrosis Using Serial Thin-Section CT and Clinical Features in Patients Discharged after Treatment for COVID-19 Pneumonia

  • Minhua Yu;Ying Liu;Dan Xu;Rongguo Zhang;Lan Lan;Haibo Xu
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.746-755
    • /
    • 2020
  • Objective: To identify predictors of pulmonary fibrosis development by combining follow-up thin-section CT findings and clinical features in patients discharged after treatment for COVID-19. Materials and Methods: This retrospective study involved 32 confirmed COVID-19 patients who were divided into two groups according to the evidence of fibrosis on their latest follow-up CT imaging. Clinical data and CT imaging features of all the patients in different stages were collected and analyzed for comparison. Results: The latest follow-up CT imaging showed fibrosis in 14 patients (male, 12; female, 2) and no fibrosis in 18 patients (male, 10; female, 8). Compared with the non-fibrosis group, the fibrosis group was older (median age: 54.0 years vs. 37.0 years, p = 0.008), and the median levels of C-reactive protein (53.4 mg/L vs. 10.0 mg/L, p = 0.002) and interleukin-6 (79.7 pg/L vs. 11.2 pg/L, p = 0.04) were also higher. The fibrosis group had a longer-term of hospitalization (19.5 days vs. 10.0 days, p = 0.001), pulsed steroid therapy (11.0 days vs. 5.0 days, p < 0.001), and antiviral therapy (12.0 days vs. 6.5 days, p = 0.012). More patients on the worst-state CT scan had an irregular interface (59.4% vs. 34.4%, p = 0.045) and a parenchymal band (71.9% vs. 28.1%, p < 0.001). On initial CT imaging, the irregular interface (57.1%) and parenchymal band (50.0%) were more common in the fibrosis group. On the worst-state CT imaging, interstitial thickening (78.6%), air bronchogram (57.1%), irregular interface (85.7%), coarse reticular pattern (28.6%), parenchymal band (92.9%), and pleural effusion (42.9%) were more common in the fibrosis group. Conclusion: Fibrosis was more likely to develop in patients with severe clinical conditions, especially in patients with high inflammatory indicators. Interstitial thickening, irregular interface, coarse reticular pattern, and parenchymal band manifested in the process of the disease may be predictors of pulmonary fibrosis. Irregular interface and parenchymal band could predict the formation of pulmonary fibrosis early.

Interstitial Lung Disease (간질성 폐질환)

  • Chung, Man-Pyo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.3
    • /
    • pp.163-171
    • /
    • 2011
  • Recently published articles on interstitial lung disease (ILD) have focused on the accurate diagnosis of idiopathic pulmonary fibrosis (IPF), serum biomarkers, acute exacerbation of IPF, the prognostic factors of ILD and the trial of new treatment. In particular, reports on the serum biomarkers such as CC-chemokine ligand 18, surfactant protein, circulating fibrocytes, and acute exacerbation of IPF are sufficient to be mentioned here. Pirfenidone therapy is the most important trial for the treatment of IPF. Other newer treatment trials such as interferon-gamma, sildenafil and imatinib have been reported to be unsuccessful. On the other hand, the sirolimus trial for lymphangioleiomyomatosis is promising. Combined pulmonary fibrosis and emphysema and IgG4-related disease are established to be the new disease entities of ILD.

NON-INVASIVE OXIDATIVE AND INFLAMMATORY BIOMARKERS IN BREATH CONDENSATE IN HEALTH AND DISEASE

  • Rahman, Irfan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.23-24
    • /
    • 2003
  • Oxidative stress is the hallmark of various inflammatory lung diseases/disorders such as asthma, adult respiratory distress syndrome, idiopathic pulmonary fibrosis, pneumonia, lung transplantation, Chronic Obstructive Pulmonary Disease (COPD), cystic fibrosis, bronchiectasis, lung cancer and various occupational diseases. (omitted)

  • PDF

A Case of Tracheomegaly and Recurrent Pneumomediastinum Combined with Pulmonary Fibrosis (폐섬유증에 동반된 기관거대증과 재발성 종격동기종 1예)

  • Jeon, Seong-Ran;Uh, Soo-Taek;Kim, Ki-Up;Lee, Young-Mok;Kim, Yang-Ki;Jung, Eun-Jung;Kim, Ji-Yon;Park, Eui-Ju
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.2
    • /
    • pp.144-148
    • /
    • 2008
  • Tracheomegaly is a distinctive condition that presents with marked dilation of the trachea. Spontaneous pneumomediastinum is the result of alveolar rupture with dissection of the airway along the bronchus and into the mediastinum. Tracheomegaly and recurrent spontaneous pneumomediastinum are rare complications of pulmonary fibrosis when combined with rheumatoid arthritis. We present a case of tracheomegaly and recurrent spontaneous pneumomediastinum that was precipitated by repeated respiratory infection and chronic cough in a patient with pulmonary fibrosis that was associated with rheumatoid arthritis.

New Era of Management Concept on Pulmonary Fibrosis with Revisiting Framework of Interstitial Lung Diseases

  • Azuma, Arata;Richeldi, Luca
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.3
    • /
    • pp.195-200
    • /
    • 2020
  • The disease concept of interstitial lung disease with idiopathic pulmonary fibrosis at its core has been relied on for many years depending on morphological classification. The separation of non-specific interstitial pneumonia with a relatively good prognosis from usual interstitial pneumonia is also based on the perception that morphology enables predict the prognosis. Beginning with dust-exposed lungs, initially, interstitial pneumonia is classified by anatomical pathology. Diagnostic imaging has dramatically improved the diagnostic technology for surviving patients through the introduction of high-resolution computed tomography scan. And now, with the introduction of therapeutics, the direction of diagnosis is turning. It can be broadly classified into to make known the importance of early diagnosis, and to understand the importance of predicting the speed of progression/deterioration of pathological conditions. For this reason, the insight of "early lesions" has been discussed. There are reports that the presence or absence of interstitial lung abnormalities affects the prognosis. Searching for a biomarker is another prognostic indicator search. However, as is the case with many chronic diseases, pathological conditions that progress linearly are extremely rare. Rather, it progresses while changing in response to environmental factors. In interstitial lung disease, deterioration of respiratory functions most closely reflect prognosis. Treatment is determined by combining dynamic indicators as faithful indicators of restrictive impairments. Reconsidering the history being classified under the disease concept, the need to reorganize treatment targets based on common pathological phenotype is under discussed. What is the disease concept? That aspect changes with the discussion of improving prognosis.

Spectrum of Pulmonary Fibrosis from Interstitial Lung Abnormality to Usual Interstitial Pneumonia: Importance of Identification and Quantification of Traction Bronchiectasis in Patient Management

  • Takuya Hino;Kyung Soo Lee;Joungho Han;Akinori Hata;Kousei Ishigami;Hiroto Hatabu
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.811-828
    • /
    • 2021
  • Following the introduction of a novel pathological concept of usual interstitial pneumonia (UIP) by Liebow and Carrington in 1969, diffuse interstitial pneumonia has evolved into UIP, nonspecific interstitial pneumonia (NSIP), and interstitial lung abnormality (ILA); the histopathological and CT findings of these conditions reflect the required multidisciplinary team approach, involving pulmonologists, radiologists, and pathologists, for their diagnosis and management. Concomitantly, traction bronchiectasis and bronchiolectasis have been recognized as the most persistent and important indices of the severity and prognosis of fibrotic lung diseases. The traction bronchiectasis index (TBI) can stratify the prognoses of patients with ILAs. In this review, the evolutionary concepts of UIP, NSIP, and ILAs are summarized in tables and figures, with a demonstration of the correlation between CT findings and pathologic evaluation. The CT-based UIP score is being proposed to facilitate a better understanding of the spectrum of pulmonary fibrosis, from ILAs to UIP, with emphasis on traction bronchiectasis/bronchiolectasis.

Inhibition of Plasminogen Activator Inhibitor-1 Expression in Smoke-Exposed Alveolar Type II Epithelial Cells Attenuates Epithelial-Mesenchymal Transition

  • Song, Jeong-Sup;Kang, Chun-Mi
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.6
    • /
    • pp.462-473
    • /
    • 2011
  • Background: Smoking is a risk factor for idiopathic pulmonary fibrosis (IPF), but the mechanism of the association remains obscure. There is evidence demonstrating that plasminogen activator inhibitor-1 (PAI-1) is involved in the progression of pulmonary fibrosis. This study was to determine whether the administration of small interfering RNA (siRNA) targeting PAI-1 or PAI-1 inhibitor to the cigarette smoking extract (CSE)-exposed rat alveolar type II epithelial cells (ATII cells) limits the epithelial-mesenchymal transition (EMT). Methods: ATII cells were isolated from lung of SD-rat using percoll gradient method and cultured with 5% CSE. The EMT was determined from the ATII cells by measuring the real-time RT PCR and western blotting after the PAI-1 siRNA transfection to the cells and after administration of tiplaxtinin, an inhibitor of PAI-1. The effect of PAI-1 inhibitor was also evaluated in the bleomycin-induced rats. Results: PAI-1 was overexpressed in the smoking exposed ATII cells and was directly associated with EMT. The EMT from the ATII cells was suppressed by PAI-1 siRNA transfection or administration of tiplaxtinin. Signaling pathways for EMT by smoking extract were through the phosphorylation of SMAD2 and ERK1/2, and finally Snail expression. Tiplaxtinin also suppressed the pulmonary fibrosis and PAI-1 expression in the bleomycin-induced rats. Conclusion: Our data shows that CSE induces rat ATII cells to undergo EMT by PAI-1 via SMAD2-ERK1/2-Snail activation. This suppression of EMT by PAI-1 siRNA transfection or PAI-1 inhibitor in primary type II alveolar epithelial cells might be involved in the attenuation of bleomycin-induced pulmonary fibrosis in rats.

Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway

  • Chenyang Ran;Meili Lu;Fang Zhao;Yi Hao;Xinyu Guo;Yunhan Li;Yuhong Su;Hongxin Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.405-416
    • /
    • 2024
  • Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

A Case of Segniliparus rugosus Pulmonary Infection in an Immunocompetent Patient with Non-cystic Fibrosis

  • Lee, Jung Yeon;Chon, Gyu Rak;Jung, Tae-Young;Sung, Heungsup;Shim, Tae Sun;Jo, Kyung-Wook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.5
    • /
    • pp.227-229
    • /
    • 2014
  • Segniliparus species is a novel genus that is reported to be the new emerging respiratory pathogens. Here, we report a very rare case of S. rugosus pulmonary infection in an immunocompetent patient with non-cystic fibrosis. The organism was identified by 16S rRNA gene sequencing. The patient was successfully treated with antibiotics.

Recent Advances in Molecular Basis of Lung Aging and Its Associated Diseases

  • Kang, Min-Jong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.83 no.2
    • /
    • pp.107-115
    • /
    • 2020
  • Aging is often viewed as a progressive decline in fitness due to cumulative deleterious alterations of biological functions in the living system. Recently, our understanding of the molecular mechanisms underlying aging biology has significantly advanced. Interestingly, many of the pivotal molecular features of aging biology are also found to contribute to the pathogenesis of chronic lung disorders such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis, for which advanced age is the most crucial risk factor. Thus, an enhanced understanding of how molecular features of aging biology are intertwined with the pathobiology of these aging-related lung disorders has paramount significance and may provide an opportunity for the development of novel therapeutics for these major unmet medical needs. To serve the purpose of integrating molecular understanding of aging biology with pulmonary medicine, in this review, recent findings obtained from the studies of aging-associated lung disorders are summarized and interpreted through the perspective of molecular biology of aging.