• Title/Summary/Keyword: Pulling Force

Search Result 94, Processing Time 0.028 seconds

Quantification of the tug-back by measuring the pulling force and micro computed tomographic evaluation

  • Jeon, Su-Jin;Moon, Young-Mi;Seo, Min-Seock
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.4
    • /
    • pp.273-281
    • /
    • 2017
  • Objectives: The aims of this study were to quantify tug-back by measuring the pulling force and investigate the correlation of clinical tug-back pulling force with in vitro gutta-percha (GP) cone adaptation score using micro-computed tomography (${\mu}CT$). Materials and Methods: Twenty-eight roots from human single-rooted teeth were divided into 2 groups. In the ProTaper Next (PTN) group, root canals were prepared with PTN, and in the ProFile (PF) group, root canals were prepared using PF (n = 14). The degree of tug-back was scored after selecting taper-matched GP cones. A novel method using a spring balance was designed to quantify the tug-back by measuring the pulling force. The correlation between tug-back scores, pulling force, and percentage of the gutta-percha occupied area (pGPOA) within apical 3 mm was investigated using ${\mu}CT$. The data were analyzed using Pearson's correlation analysis, one-way analysis of variance (ANOVA) and Tukey's test. Results: Specimens with a strong tug-back had a mean pulling force of 1.24 N (range, 0.15-1.70 N). This study showed a positive correlation between tug-back score, pulling force, and pGPOA. However, there was no significant difference in these factors between the PTN and PF groups. Regardless of the groups, pGPOA and pulling force were significantly higher in the specimens with a higher tug-back score (p < 0.05). Conclusions: The degree of subjective tug-back was a definitive determinant for master cone adaptation in the root canal. The use of the tug-back scoring system and pulling force allows the interpretation of subjective tug-back in a more objective and quantitative manner.

A Study on the Pulling Force Characteristic of the Reverse Screw for the Metal Fastening Method (Metal Fastening 공법을 위한 Reverse Screw의 견인력 특성에 관한 연구)

  • Kim, Tae-Hyung;Lee, Seong-Wook;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The metal fastening method is the new technology to repair cracks in the casting material using specially designed reverse screws. In this study, we conduct the finite element analysis to analyze the pulling force characteristic of a reverse screw, the core component of the metal fastening method, with respect to the change of the applying torque, frictional coefficient and front screw angle. The simplified analysis model with single screw pitch is proposed for convergency of the non-linear contact analysis. As a results, the pulling force of a reverse screw increase in proportion to the applying torque but exponentially decrease according to frictional coefficient. And also we can find the optimum front screw angle with the largest pulling force is $20^{\circ}$.

Effect of Task Direction on the Maximal Pushing, Pulling, Twisting, and Grip Forces

  • Yoon, Jangwhon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.413-423
    • /
    • 2016
  • Objective:The aims of this study are to understand the effects of task (pushing, pulling, and clockwise and counter clockwise twisting) direction on the maximal output and their grip forces and to explore the relationship between the maximal output and the grip forces. Background: Knowing the normative maximal grip force is not enough to design a good hand tool. The industrial designers should understand the required grip forces in various motions toward a specific direction to make an effective and efficient hand tool. Method: Eighteen healthy volunteers participated in the series of isometric maximal output force tests. A custom-made force measuring equipment collected the output and the grip forces for three seconds. Force measurements along the vertical, coronal and sagittal axes were randomly repeated three times. Results: The pulling was strongest and the pushing was weakest in all directions. The effect of motion on the output forces varied in different directions. The corresponding grip force increased in the order of pushing, pulling, clockwise twisting, and counter clockwise twisting in all directions. The maximal output and their grip forces were highly correlated but the relationship was affected by motion and direction. The regression coefficient was greatest in pulling and smallest in clockwise twisting. Conclusion: The effect of motion on the output forces varied in different directions. The maximal output and their grip forces were correlated but the relationship was affected by motion and direction. Application: Findings of this study can be valuable information for industrial designers to develop more productive hand tools and work stations to help preventing the musculoskeletal disorders at work.

Development of a Hook-type Finger Force Measuring System with Force Sensors (힘센서를 이용한 후크형 손가락 힘 측정 장치 개발)

  • Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.663-668
    • /
    • 2014
  • This paper presents a hook-type finger force measuring system with force sensors. The system is composed of a body, two three-axis force sensors, a hook, and so on. The two three-axis force sensors system was specially designed using FEM(Finite Element Method) and fabricated using strain-gages. The sensors measure the finger forces of both normal people and handicapped people in the system, and the forces are combined. The developed hook-type finger force measuring system can measure the pulling finger force of both normal and handicapped people. The pulling force tests of men and women were performed using the developed the system. It is thought that the developed system can be used to measure the pulling force of fingers.

Strength Properties of Boxthorn(Lycium chinense Mill) Fruit-Stem Joints (구기자 열매와 과병 접합부의 강도 특성)

  • 서정덕;허윤근;이상우
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.511-516
    • /
    • 2000
  • The strength of the connecting joint of boxthorn(Lycium chinense Mill) fruits to tree twigs was determined experimentally at several pulling angles(0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$,45$^{\circ}$and 60$^{\circ}$) and at different harvesting seasons from August to November 1999 using an universal testing machine. The detachment force of mature fruits of boxthorn decreased as the pulling angle increased and varied with the harvesting season. The detachment force however did not gradually decreased as the harvesting season advanced due to difference of maturity of fruits from one harvesting season to another. Among three varieties of boxthron Cheongyang gugija Cheongyang native and Cheongyang #2, the maximum detachment force was 1.24 N at the pulling angle of zero degree. The highest detachment forve(1.29 N) of mature fruits of boxthorn appeared at the harvesting season of August, 1999.

  • PDF

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF

Analysis of the Pultrusion Process of Thermosetting Composites Containing Volatiles (휘발물질이 존재하는 열경화성수지 복합재료의 Pultrusion 공정 해석)

  • 김대환;이우일;김병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.527-536
    • /
    • 1995
  • Analysis of pultrusion process for the thermosetting composites containing volatiles was performed. Degree of cure, amount of volatile evolved and pulling force were calculated for the processing variables such as die temperature and pulling speed. Cure kinetics was modeled from the data obtained by DSC(Differential Scanning Calorimeter). The volatile evolution kinetics was modeled from the data by DSC as well as TGA(Thermo Gravimetric Analyzer). The cure kinetics and volatile evolution kinetics models were incorporated into the energy equation. The resulting governing equation was solved using finite element method. Pulling force was calculated through the analysis of pressure developed inside the pultrusion die. Experiments were performed and the data were compared with the calculated results. Good agreements were observed.

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.

Riser Installation by a J-Tube Pulling Method

  • Park, H.S.;J. H. Jung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.110-116
    • /
    • 2000
  • The analysis was carried out for a riser installation by a J-tube pulling method. The J-tube system components, mechanics of pull-in operation, and the theoretical background for the J-tube pull-in was investigated. A computer program was developed to calculate the pull-in force for a riser installation by a J-tube pulling method.

  • PDF

A study of electromyographic signals during isometric hand pushing and pulling in a free posture

  • Chung, Min-Keun;Lee, Kwan-Suk
    • Journal of the Ergonomics Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.3-18
    • /
    • 1989
  • Two sets of isometric pushing and pulling experiments were performed by two male and two female susbjects. One set of experiments involoved isometric hand pushing and pulling in a standing erect posture, in which the thigh and pelvic regions of the subjects were braced to achieve the greatest strength. Another set of experiments involved isometric hand pushing and pulling in a free posture, in which the subjects elected their preferred postures to attain the largest strength at each of thred handle heights (low-66cm ; mid-109cm ; and high-152cm). It was shown from isometric pushing and pulling experiments in a standing erect poture that the rectus abdominis and the erector spinae muscles were acting as an antagonistic pair with respect to the L5/S1 intervertebral joint, and that the integrated EMG and the muscle force were linearly related. However, the relationships between the integrated EMG and the muscle force during isometric pushing and pulling in a free posture were not well-correlated. It is proposed that the integrated EMG results should be carefully interpreted for tasks of pushing and pulling at various handle heights.

  • PDF