• Title/Summary/Keyword: Pull-out Tests

Search Result 225, Processing Time 0.024 seconds

The Development of End-expanded Soil Nailing Method for Ground Reinforcement and its Behavior Characteristics (선단확장형 쏘일네일링 공법 개발과 거동특성 분석)

  • Moon, Hongduk;Jung, Youndug
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.19-27
    • /
    • 2013
  • Recently, the natural and man-made slope collapses occur frequently because of sudden heavy rains. So, a variety of slope reinforcement methods have been developed and applied to failure slopes. Soil nailing method usage has been increased because of its workability and economic aspects. This method has been applied in combination with other slope stability methods. Soil nailing method is a kind of combinational structure of steel bar and cement grouting. This method uses skin friction between adjacent ground and cement grouting to stabilize the slope. In this study, End-expanded soil nailing method was developed. This method consists of steel bar and anchor body attached at the tip of the nail. During construction, the anchor body at steel bar tip is settled to the ground through the expanding action. In this study, field pull-out tests were performed for un-grouting soil nailing and grouting soil nailing. From the test results, a wedge force of End-expanded soil nailing method was analyzed. And the behavior characteristics of End-expanded soil nailing were studied.

Development of a Screw-Crane System for Pre-Lifting the Sternal Depression in Pectus Excavatum Repair: A Test of Mechanical Properties for the Feasibility of a New Concept

  • Park, Hyung Joo;Rim, Gongmin
    • Journal of Chest Surgery
    • /
    • v.54 no.3
    • /
    • pp.186-190
    • /
    • 2021
  • Background: Pre-lifting of the sternum marked a major turning point in pectus excavatum repair. The author developed the crane technique in 2002 and successfully applied it to more than 2,000 cases using sternal wire stitching. However, blind sternal suturing limited the use of the wire-stitch crane. We propose a novel screw for sternal lifting as a new tool for the crane technique. Methods: We developed a screw system strong enough to withstand the pressure needed for sternum lifting. The screw was designed to have a broader thread to hold the bony tissue securely. The screw's sustaining power was tested using the torsion, driving torque, and axial pull-out tests in a polyurethane block and ex-vivo porcine sternum. Results: The screws were easily driven into the sternum, and the head of the screw was connectable to the table-mounted retractor. In the torsion test, the 2° offset torsional yield was 4.53 N·m (reference value, 1 N·m). In the polyurethane block driving torque test, the maximum torque was 0.98 N·m (reference value, 0.70 N·m). The axial pull-out test was 446 N (reference value, 100 N). The maximum pull-out resistance in the ex-vivo porcine sternum model was 1,516 N. Conclusion: The screw crane was strong enough to sustain the chest wall weight to be lifted. Thus, the screws could effectively replace the sternal wire stitching in crane pre-lifting of the sternum. We expect that application of the screw-crane will be easy and that it will improve the safety and success rate of pectus repair surgery.

A Study on the Failure Modes of Neat Kevlar Fabric and Kevlar Liquid Armor Impregnated with Shear Thickening Fluid (케블라 직물과 전단농화유체로 함침된 케블라 액체 방탄재의 파단모드 연구)

  • Yoon, Byung-Il;Song, Heung-Sub;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.17-24
    • /
    • 2007
  • In this study, the failure modes by ballistic impacts were studied both for a neat Kevlar woven fabric and a Kevlar liquid armor impregnated with shear thickening fluid (STF) containing silica particles. These two materials showed quite different failure modes macroscopically in ballistic impacts tests used by Cal.22 FSP and 9mm FMJ bullet. Yarn pull-out for the neat Kevlar woven fabric and yarn fracture occurred partially through all plies from 1st ply to last one for the STF-Kevlar are an important energy absorption mechanisms. The results observed by S.E.M showed commonly fiber damage which are torn skin in the longitudinal fiber direction, fiber split axially and fiber fracture for two materials. The reasons why STF-kevlar liquid armor material exhibits excellent ballistic performance are as follow: firstly the increased friction forces between yarn-yarn and fabric-fabric covered with silica particles and secondary the evolution of shear thickening phenomenmon resulting in suppression of yarn mobility.

A Fundamental Study on Behavior Characteristics of the Geosynthetic Composite Reinforcement in the Weathered Granite Backfill Soils (화강풍화토 뒤채움흙 내부 토목섬유 복합보강재의 거동특성에 관한 기초연구)

  • 김홍택;김승욱;전한용;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.171-191
    • /
    • 1999
  • The final aim of this research is to systematize the reinforced-earth wall system using the geosynthetic composite reinforcement in the weathered granite backfill soils having relatively large amount of fines. As a staged endeavour to accomplish this purpose, laboratory pull-out tests and finite element modeling are carried out in the present study focusing on the analyses of friction characteristics associated with interaction behaviors of the geosynthetic composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects resulting from the geotextile.

  • PDF

Development for Finishing Method of Concrete Structures Applying Metal Spraying System (금속용사 시스템을 이용한 콘크리트 구조물의 마감공법 개발)

  • 이한승
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1225-1228
    • /
    • 2001
  • The purpose of this study is to develop for finishing method of concrete structures applying metal spraying system. In the experiments, the pull out tests were conducted using the specimen which was applied by various surface treatment of concrete substrate. As a result, it was confirmed that the adhesion strength of metal spray was effected by surface condition of concrete and the construction of primer or the coarse surface agent to the concrete substrate is very effective to the new finishing method of concrete for the metal spraying system.

  • PDF

A Study on the Relationship between Degree of Rust Condition and Bond Strength in Reinforced Concrete Members (철근의 부식정도와 부착강도에 대한 연구)

  • 유환구;이병덕;김국한;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.621-626
    • /
    • 1998
  • An experimental investigation on the reinforcing bar corrosion and relationshid of reinforcing bar and concrete bond strength has been conducted to establish the allowable limit of rust in the construction field. The reinforcing bars used in this study were rusted before embedding in concrete. The first component of this experiment is to make rust of reinforcing bar rust artificially based on Faraday's theory at certain rates such as 2, 4, 6, 8 and 10% of reinforcing bar weight. For estimation of the amount of rust by weight, Clarke's solution and Shot blasting were adopted and compared. Parameters include 240 and 450kg/㎠ of compressive strengths and diameter of reinforcing bar (16, 19 and 25mm) corresponding development length for pull-ort test. And, pull-out tests were carried. out according to KSF 2441 and ASTMC 234 to investigate the effect of the corrosion rate on reinforcing bar-concrete bond behavior. It is found from the test results that the test techniques for corrosion of bar used in this study is relatively effective and correct test method. Results shows that up to 2% of rust increases the bond strength regardless of concrete strength and diameter of reinforcing bar like the existing data. It might be because of the roughness from rust. As expected, the bond strength increases as compressive strength of concrete increases and the diameter of bar decreases.

  • PDF

Modeling of bond behavior of hybrid rods for concrete reinforcement

  • Nanni, Antonio;Liu, Judy
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.355-368
    • /
    • 1997
  • Fiber reinforced plastic (FRP) rods are used as reinforcement (prestressed or not) to concrete. FRP composites can also be combined with steel to form hybrid reinforcing rods that take advantage of the properties of both materials. In order to effectively utilize these rods, their bond behavior with concrete must be understood. The objective of this study is to characterize and model the bond behavior of hybrid FRP rods made with epoxy-impregnated aramid or poly-vinyl alcohol FRP skins directly braided onto a steel core. The model closely examines the split failure of the concrete by quantifying the relationship between slip of the rods resulting transverse stress field in concrete. The model is used to derive coefficients of friction for these rods and, from these, their development length requirements. More testing is needed to confirm this model, but in the interim, it may serve as a design aide, allowing intelligent decisions regarding concrete cover and development length. As such, this model has helped to explain and predict some experimental data from concentric pull-out tests of hybrid FRP rods.

Mechanical Properties of Carbon/Phenolic Ablative Composites (Carbon/Phenolic 내열 복합재료의 기계적 특성)

  • Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.160-163
    • /
    • 1999
  • The mechanical properties and failure behaviour of carbon/phenolic composites were inverstigated by tension and compression. Carbon/phenolic composites were fabricated by infiltration of matrix into 8 harness satin woven fabric of PAN-based carbon fibers. The tensile and compressive tests were performed at 25℃ under air atmosphere and, at 400℃ and 700℃ under N₂ atmosphere. The tensile strengths of carbon/phenolic composites in with-laminar/0° warp direction were about 10 times higher than those in with-laminar/45° warp direction, which was analyzed due to a change of fracture mode from fiber pull-out by shear to tensile fracture of fibers. The fracture of carbon/phenolic composites in with-laminar/45° direction was analyzed due to delamination by buckling. Tensile and compressive strength of carbon/phenolic composites decreased to about 50% at 400℃, and to about 10% at 700℃ compared to that at room temperature. The main reason for the decrease of tensile or compressive strength with increasing temperature was analyzed due to a reduction of bond strength between fibers and matrix resulting from thermal degradation of phenolic resin.

  • PDF

Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents (나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

The Bond Characteristics of Deformed Bars in Recycled Coarse Aggregates Concrete (RCAC) (순환골재 콘크리트와 이형철근의 부착 특성)

  • Jeon, Su-Man;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.165-173
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. For practical application, it is very important to study bond behavior of reinforcing bars in recycled aggregate concrete (RAC). Thirty six pull-out tests were carried out in order to investigate the bond behaviour between recycled coarse aggregate concrete (RCAC) and deformed bars. RCA replacement ratios (i.e., 0%, 30%, 60% and 100%) and positions of deformed bar (i.e., vertical and horizontal position) were considered as variables in this paper. Each specimen was in the form of a cube, with edges of 150 mm in length and for the pull-out tests, a deformed bar, 13 mm in diameter, was embedded in the center of each specimen. Based on the test results, the bond strength between the RCAC and deformed bars were influenced by both RCA replacement ratios and positions of deformed bars. It was found that under the equivalent mix proportion (i.e., the mix proportions are the same, except for different RCA replacement ratios), the bond strength between the RCAC and the ribbed bar has no obvious relation with the RCA replacement ratio, whereas the positions of deformed bars have a significant effect on the bond behavior between the RCAC and deformed bars. Under the condition of same RCA replacement ratio, the specimen of horizontal reinforcement at upper position (HU type) appear considerably low bond stress.