• Title/Summary/Keyword: Pull-out 강도

Search Result 197, Processing Time 0.023 seconds

Field Pullout Tests and Stability Evaluation of the Pretension Soil Nailing System (프리텐션 쏘일네일링 시스템의 현장인발시험 및 안정성 평가)

  • Kim, Hong-Taek;Choi, Young-Geun;Park, Si-Sam;Kim, Berm-Suk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.27-40
    • /
    • 2003
  • In the present study, a newly modified soil nailing technology named as the PSN(Pretension Soil Nailing) system is proposed. Effects of various factors related to the design of the pretension soil nailing system, such as the length of a sheathing pipe and the fixed cone, are examined throughout a series of the displacement-controlled field pull-out tests. 9 displacement-controlled field pull-out tests are performed in the present study and the pretension forces are also evaluated based on the measurements. In addition, both short-term and long-term characteristics of pull-out deformations of the newly proposed PSN system are analyzed and compared with those of the general soil nailing system by carrying out the stress-controlled field pull-out tests. A numerical approach is further made to determine a postulated failure surface as well as a minimum safety factors of the proposed PSN system using the shear strength reduction technique and the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system are analyzed throughout comparisons with the results expected in case of the general soil nailing system. An efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Study on Adhesive Strength of Polymer Modified Cement Mortar for Maintenance in Concrete Structure (콘크리트 구조물 보수용 폴리머시멘트 모르타르의 부착강도 특성에 관한 연구)

  • Park, Sang-Soon;Kim, Jung-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.128-135
    • /
    • 2010
  • Polymer-modified cement mortar(PCM) has been widely used for strengthening of the concrete structures due to its excellent physical properties such as high strength and durability. Adhesive strength or behavior, on the other hands, between PCM and concrete is very important in strengthening the concrete member using PCM. Therefore the adhesive failure mechanism between PCM and concrete should be fully verified and understood. This study was performed to evaluate adhesive strength of PCM to the concrete by the direct pull-out test. In the direct pull-out tests, the adhesive strength under the various pre-treatment conditions such as immersion, thunder shower, freezing and thawing are evaluated. Also, the field direct pull-out test are performed to investigate the adhesive strength of mock-up test specimens. In the results of the test, the adhesive strength value by field test are lower than those of the standard curing condition. From these comparison and investigation, field test result was similar with the thunder shower test result. The results of the test was used to evaluate the korean industrial standard of polymer modified cement mortars for maintenance in concrete.

Experimental Study on the Shear Behavior of Reinforced Hooked-Steel-Fiver Concrete Beams (훅트강섬유보강 철근콘크리트보의 전단거동에 대한 실험적 연구)

  • 심종성;이차돈;김규선;오홍섭
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.5
    • /
    • pp.179-188
    • /
    • 1995
  • SFRC overcomes brittleness of concrete and has increases strength due to the action of confmement, crack arrestmg mechan~sm and pull out resistances of steel f~bers ~ n s ~ d e the concrete. These lead also to the increased strength and ductility under the shear stress. It has been reported that the secondary remforcement effect of steel fibers IS more pronounced In shear than flexure. Addition of hooked stee!, fibers into the cementitious materials enhanced shear resistance and consequently improves structural behavior and shear strength of Reinforced Hooked-Steel-Fiber Concrete Ream(RHSFCI3) under the shear forces. Experimental observations were made on the main parameters effecting structural behavior of RHSFCB in this study. The volume fractions of fibers, shear span to depth ratios, and spaclngs of stlrrups were taken into account as the mam parameters. Some eyuatlons reported in the literatures, regardmg the predict~ons of the shear strength of RHSFCB have been evaluated stdtlst~cdlly based on the tot a1 number of 95 test results on RHSFCB faded In shear on shear flexu~al mode.

Comparison of Bond-Slip Behavior and Design Criteria of High Strength Lightweight Concrete with Compressive Strength 50 MPa and Unit Weight 16 kN/m3 (압축강도 50 MPa, 단위중량 16 kN/m3 고강도 경량 콘크리트 부착-슬립 거동의 설계기준과의 비교)

  • Lee, Dong-Kyun;Lee, Do-Kyung;Oh, Jun-Hwan;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.168-175
    • /
    • 2022
  • With the recent development of nanotechnology, its application in the field of construction materials is continuously increasing. However, until now, studies on the bond characteristics of concrete and rebar for applying high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of 16 kN/m3 to structural members are lacking. Therefore, in this paper, 81 specimens of high-strength lightweight concrete with a compressive strength of 50 MPa and a unit weight of about 16 kN/m3 were fabricated and a direct pull-out tests were performed. The design code for the bond strength of ACI-408R and the experimental results are shown to be relatively similar, and as a result of the CEB-FIP and modified CMR bond behavior models through statistical analysis, it is shown to describe well on average.

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

Strength Development Properties of Latex Modified Concrete For New Concrete Bridge Deck Overlay (신설 콘크리트 교면 덧씌우기를 위한 라텍스 개질 콘크리트의 강도발현 특성)

  • Yun, Kyong-Ku;Kim, Ki-Heoun;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.3 no.3 s.9
    • /
    • pp.135-146
    • /
    • 2001
  • This study focused on the investigation of compressive and flexural strengths development, and bond strength of latex modified concrete in order to validate the feasibility of application into concrete bridge deck overlay. Pull-out bond test was used for evaluating the bond strength of latex modified concrete to substrate. The main experimental variables were latex-cement ratio, surface preparation and moisture levels. The compressive strength of latex modified concrete decreased slightly and the flexural strength increased as the latex content increased from 5% to 20%. This might be due to the flexibility latex filled in voids and interconnections of hydrated cement and aggregates by a film of latex particles, respectively. In general, increasing the amount of latex will produce concrete with increased tensile and flexural strength and lower modulus of elasticity. Significant improvements in bond strength between new and existing concrete were achieved through the modification of the new concrete bridge deck overlay by latex polymers. The effect of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated condition of surface is the most appropriate moisture level among the considered followed by dry condition and wet condition.

  • PDF

The Behavior of Anchor Connections of Cold-Formed Steel Roof Truss (경량형강 지붕트러스 앵커부의 거동)

  • Kwon, Young Bong;Kang, Sueng Won;Chung, Hyun Suk;Choi, Young Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.519-529
    • /
    • 2003
  • In recent years, the use of cold-formed steel roof truss has been increased in the steel houses and high-rise apartments. The design of the roof truss anchor connections has been based on the experience and decision of designers. In this paper, the structural behavior of anchor connections based on experimental and decision is described. In the tests, truss members and connection members were jointed directly with self-drilling screw fasteners and the simple shaped connection member with excellent workability and structural capacity was used to connect roof truss and sub-structure. The connecting method was selected according to the construction material of sub-structure: chemical anchor for reinforced concrete structure and welding or DX-Pin for steel structures. The pull-out tests of various type anchor connection were executed to obtain the strength and the stiffness and the result have been compared with AISI(1996) and AlSC(1989) specifications, Simple formulas for the shear strength of screw connections have been propose and compared with tests.

Determination of Structural Capacity Based on Deformation and Bond Strength for RC Structure at Steel Corrosion (변형과 부착강도 기반 철근 부식에 의한 RC구조물의 구조적 성능 평가)

  • Jung Wook Lee;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.449-457
    • /
    • 2023
  • In this study, the structural limit for concrete was experimentally determined against corrosion of steel. The structural limit was taken as (1) the deformation of concrete at yielding, (2) the maximum pull-out strength and (3) the pull-out strength at the level for uncorroded specimen. Corrosion of steel was accelerated by extracting charges from steel surface to govern degree of steel corrosion. As a result, an increase in the steel diameter resulted in an increase in the corrosion degree to reach the concrete deformation at yielding. Again, an increase in the steel diameter resulted in an increase in the extracted charge to meet the maximum and uncorroded-equivalent level for the bond strength. However, the mass loss was marginally affected by the steel size, reflecting that these parameters could be used to alert the structural limit.

A Study on Shear strength and Friction Properties of Fiber-Mixed Soil as Backfill Material in Reinforced Earth Wall (섬유혼합 보강토의 전단강도특성 및 마찰특성 연구)

  • 조삼덕;김진만;안주환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.651-658
    • /
    • 2002
  • A series of experimental study are performed to evaluate the shear strength and friction properties of fiber-mixed soil as backfill material in reinforced earth wall. In order to evaluate the properties of shear strength the big-size direct shear tests are carried out and on the friction properties, the shear friction tests and the pull-out tests are performed. In the results, when the mixed ratio of the net type fiber is 0.2%, the reinforcement effect was better than the others. Also the reinforcement effect of the net type fiber was larger than that of the line type fiber.

  • PDF

Pull-Out Properties of Steel Strip Reinforcement with Transverse Steel Bar (지지부재를 설치한 띠형 강판보강재의 인발마찰 특성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Ju, Jae-Woo;Park, Jong-Beom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.31-37
    • /
    • 2007
  • A steel strip reinforcement for the reinforced earth structures was recently developed to substitute the existing ribbed steel strip reinforcement. The developed reinforcement consists of the punched steel strip having dimension of 65mm width and 4.5mm thickness and the transverse steel bar for increasing bearing resistance. The punched steel strip has holes of 11mm diameter in every 50cm spacing with 2mm rising around perimeter of the holes. A series of shear friction tests and pull-out tests were carried out to evaluate the friction properties of the developed reinforcement. The results of these tests show that pull-out resistance of the developed reinforcement was significantly increased when the transverse steel bars are installed in the punched steel strip.

  • PDF