• Title/Summary/Keyword: Public-Key Cryptography

Search Result 240, Processing Time 0.026 seconds

A East Public-Key Cryptography Using RSA and T-invariants of Petri Nets

  • Ge, Qi-Wei;Takako Okamoto
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.669-672
    • /
    • 2000
  • This paper deals with cryptography by applying RSA and Petri nets. Firstly, we introduce RSA cryptography and a Petri net based private-key cryptography. Then we propose a new public-key cryptography, Petri Net based Public-Key Cryptography dented as PNPKC, by taking the advantages of these two proposed cryptographys and give an example to show how to apply PNPKC. Finally, we do the comparison between RSA cryptography and PNPKC on security as well as computation order. As the results, the security of PNPKC is as strong as RSA cryptography and further the encryption and decryption of PNPKC are in average 210 times as fast as RSA cryptography from our experimental data.

  • PDF

Research on Multi-precision Multiplication for Public Key Cryptography over Embedded Devices (임베디드 장비 상에서의 공개키 기반 암호를 위한 다중 곱셈기 최신 연구 동향)

  • Seo, Hwajeong;Kim, Howon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.5
    • /
    • pp.999-1007
    • /
    • 2012
  • Multi-precision multiplication over public key cryptography should be considered for performance enhancement due to its computational complexity. Particularly, embedded device is not suitable to execute high complex computation, public key cryptography, because of its limited computational power and capacity. To overcome this flaw, research on multi-precision multiplication with fast computation and small capacity is actively being conducted. In the paper, we explore the cutting-edge technology of multi-precision multiplication for efficient implementation of public key cryptography over sensor network. This survey report will be used for further research on implementation of public key cryptography over sensor network.

On Encryption of a Petri Net based Multi-Stage-Encryption Public-Key Cryptography

  • Ge, Qi-Wei;Chie Shigenaga;Mitsuru Nakata;Ren Wu
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.975-978
    • /
    • 2002
  • A new conception of public-key cryptography MEPKC, Petri net based Multi-stage-Encryption Public-Key Cryptography, has been proposed in onder to guarantee stronger network communication security. Different from an ordinary public-key cryptography that opens only a single public key to the public, MEPKC opens a key-generator that can generate multiple encryption keys and uses these keys to encrypt a plain text to a cipher text stage by stage. In this paper, we propose the methods how to carry out the encryption operations. First, we describe how to design a hash function H that is used to conceal the encryption keys from attack. Then, given with a key-generator (a Petri net supposed to possess a large number of elementary T-invariants), we discuss how to randomly generate a series of encryption keys, the elementary T-invariants. Finally, we show how to use these encryption keys to encrypt a plain text to a cipher text by applying a private key cryptography, say DES.

  • PDF

Cryptanalysis and Improvement of an Efficient Certificateless Signature Scheme

  • Li, Jiguo;Huang, Xinyi;Mu, Yi;Wu, Wei
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • In traditional digital signature schemes, certificates signed by a trusted party are required to ensure the authenticity of the public key. In Asiacrypt 2003, the concept of certificateless signature scheme was introduced. The advantage of certificateless public key cryptography successfully eliminates the necessity of certificates in the traditional public key cryptography and simultaneously solves the inherent key escrow problem suffered in identity-based cryptography. Recently, Yap et al. proposed an efficient certificateless signature scheme and claimed that their scheme is existentially unforgeable in the random oracle model. In this paper, we show that the certificateless signature scheme proposed by Yap et al. is insecure against public key replacement attacks. Furthermore, we propose an improved certificateless signature scheme, which is existentially unforgeable against adaptive chosen message attacks under the computational Diffie-Hellman assumption in the random oracle model and provide the security proof of the proposed scheme.

Enhanced Certificate-Based Encryption Scheme without Bilinear Pairings

  • Lu, Yang;Zhang, Quanling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.881-896
    • /
    • 2016
  • Certificate-based cryptography is a useful public key cryptographic primitive that combines the merits of traditional public key cryptography and identity-based cryptography. It not only solves the key escrow problem inherent in identity-based cryptography, but also simplifies the cumbersome certificate management problem in traditional public key cryptography. In this paper, by giving a concrete attack, we first show that the certificate-based encryption scheme without bilinear pairings proposed by Yao et al. does not achieve either the chosen-ciphertext security or the weaker chosen-plaintext security. To overcome the security weakness in Yao et al.'s scheme, we propose an enhanced certificate-based encryption scheme that does not use the bilinear pairings. In the random oracle model, we formally prove it to be chosen-ciphertext secure under the computational Diffie-Hellman assumption. The experimental results show that the proposed scheme enjoys obvious advantage in the computation efficiency compared with the previous certificate-based encryption schemes. Without costly pairing operations, it is suitable to be employed on the computation-limited or power-constrained devices.

Asymmetric Public Key Cryptography by Using Logic-based Optical Processing

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • In this paper, a new asymmetric public key cryptography based on the modified RSA algorithm is proposed by using logic-based optical processing. The proposed asymmetric public key algorithm is realized into an optical schematic, where AND, OR and XOR logic operations are implemented by using free space digital optics architecture. Schematically, the proposed optical configuration has an advantage of generating the public keys simultaneously. Another advantage is that the suggested optical setup can also be used for message encryption and decryption by simply replacing data inputs of SLMs in the optical configuration. The last merit is that the optical configuration has a 2-D array data format which can increase the key length easily. This can provide longer 2-D key length resulting in a higher security cryptosystem than the conventional 1-D key length cryptosystem. Results of numerical simulation and differential cryptanalysis are presented to verify that the proposed method shows the effectiveness in the optical asymmetric cryptographic system.

Provably Secure Certificate-Based Signcryption Scheme without Pairings

  • Lu, Yang;Li, Jiguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2554-2571
    • /
    • 2014
  • Certificate-based cryptography is a new cryptographic paradigm that provides an interesting balance between identity-based cryptography and traditional public key cryptography. It not only simplifies the complicated certificate management problem in traditional public key cryptography, but also eliminates the key escrow problem in identity-based cryptography. As an extension of the signcryption in certificate-based cryptography, certificate-based signcryption provides the functionalities of certificate-based encryption and certificate-based signature simultaneously. However, to the best of our knowledge, all constructions of certificate-based signcryption in the literature so far have to be based on the costly bilinear pairings. In this paper, we propose a certificate-based signcryption scheme that does not depend on the bilinear pairings. The proposed scheme is provably secure in the random oracle model. Due to avoiding the computationally-heavy paring operations, the proposed scheme significantly reduces the cost of computation and outperforms the previous certificate-based signcryption schemes.

Optical Asymmetric Cryptography Modifying the RSA Public-key Protocol

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.103-114
    • /
    • 2020
  • A new optical asymmetric cryptosystem is proposed by modifying the asymmetric RSA public-key protocol required in a cryptosystem. The proposed asymmetric public-key algorithm can be optically implemented by combining a two-step quadrature phase-shifting digital holographic encryption method with the modified RSA public-key algorithm; then two pairs of public-private keys are used to encrypt and decrypt the plaintext. Public keys and ciphertexts are digital holograms that are Fourier-transform holograms, and are recorded on CCDs with 256-gray-level quantized intensities in the optical architecture. The plaintext can only be decrypted by the private keys, which are acquired by the corresponding asymmetric public-key-generation algorithm. Schematically, the proposed optical architecture has the advantage of producing a complicated, asymmetric public-key cryptosystem that can enhance security strength compared to the conventional electronic RSA public-key cryptosystem. Numerical simulations are carried out to demonstrate the validity and effectiveness of the proposed method, by evaluating decryption performance and analysis. The proposed method shows feasibility for application to an asymmetric public-key cryptosystem.

A Study on Public Key Cryptographic Authentication System Providing Key Distribution and Recovery in the Initial Authentication (초기인증에서 키 분배 및 복구를 지원하는 공개키 암호 인증시스템에 관한 연구)

  • Shin Kwang-Cheul;Cho Sung-Je
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.83-91
    • /
    • 2006
  • In this paper, we improved a cryptography system model based on the secure initial authentication public key with PKINIT of authentication and key recovery protocol. It is applied to all fields of cryptography system using certificate. This study presents two mechanisms to authenticate between member users. The first mechanism is initial authentication and distribution of session key by public key cryptography based on certificate between entity and server, and the second mechanism is a key recovery support protocol considering loss of session key in the secure communication between application servers.

  • PDF

Certificateless multi-signer universal designated multi-verifier signature from elliptic curve group

  • Deng, Lunzhi;Yang, Yixian;Chen, Yuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5625-5641
    • /
    • 2017
  • Certificateless public key cryptography resolves the certificate management problem in traditional public key cryptography and the key escrow problem in identity-based cryptography. In recent years, some good results have been achieved in speeding up the computation of bilinear pairing. However, the computation cost of the pairing is much higher than that of the scalar multiplication over the elliptic curve group. Therefore, it is still significant to design cryptosystem without pairing operations. A multi-signer universal designated multi-verifier signature scheme allows a set of signers to cooperatively generate a public verifiable signature, the signature holder then can propose a new signature such that only the designated set of verifiers can verify it. Multi-signer universal designated multi-verifier signatures are suitable in many different practical applications such as electronic tenders, electronic voting and electronic auctions. In this paper, we propose a certificateless multi-signer universal designated multi-verifier signature scheme and prove the security in the random oracle model. Our scheme does not use pairing operation. To the best of our knowledge, our scheme is the first certificateless multi-signer universal designated multi-verifier signature scheme.