On Encryption of a Petri Net based Multi-Stage-Encryption
Public-Key Cryptography

Qi-Wei Get, Chie Shigenagat, Mitsuru Nakatat and Ren Wuty

t Faculty of Education, Yamagunchi University, Japan
1 Part-time Lecturer of Yamaguchi University, Japan
1677-1 Yoshida, Yamaguchi 753-8513, Japan
1t Tel: +81-83-933-5401, Fax: +81-83-933-5304
E-mail: t {gqw, shigenaga, nakata}@inf.edu.yamaguchi-u.ac.jp

Abstract: A new conception of public-key cryptography MEP-
KC, Petri net based Muiti-stage-Encryption Public-Key Cryptog-
raphy, has been proposed in order to guarantee stronger network
communication security. Different from an ordinary public-key
cryptography that opens only a single public key to the public,
MEPKG opens a key-generator that can generate multiple encryp-
tion keys and uses these keys to encrypt a plain text to a cipher
text astage by stage. In this paper, we propose the methods how
to carry out the encryption operations. First, we describe how to
design a hash function H that is used to conceal the encryption
keys from attack. Then, given with a key-generator (a Petri net
supposed to possess a large number of elementary T-invariants),
we discuss how to randomly generate a series of encryption keys,
the elementary T-invariants. Finally, we show how to use these en-
cryption keys to encrypt a plain text to a cipher text by applying
a private-key cryptography, say DES.

1. Introduction

To guarantee safety electronic communications, public-
key cryptography becomes ever important in order to
avoid leak of secret information or dishonest alteration
of the information [1). As public-key cryptography, there
are RSA {2], ElGamal (3], etc., among which RSA is
most extensively used in various network communica-
tions. Recently, elliptic curve cryptography that is de-
veloped and improved from RSA has attracted a great
deal of attention [4] and also PGP cryptograpby {5} has
been widespreadly used in email text encryption. These
cryptosystems possess security as strong as subexponen-
tial or exponential computation time.

To make the security furthermore stronger, a new
public-key cryptography, Petri net based Multi-stage-
Encryption Public-Key Cryptograpby (MEPKC for
short hereafter), has been proposed [6). Different from
an ordinary public-key cryptography that opens only a
single public key to the public, MEPKC opens to the
public a key-generator that can generate multiple en-
cryption keys and uses these keys to encrypt a plain
text to a cipher text stage by stage. So that the security
of a ciphertext will be increased exponentially with the
number of the encryption stages [6].

In this paper, we mainly discuss how to generate en-
cryption keys from a given key-generator and how to do
the eneryption of a plaintext by using MEPKC. First-
ly, we describe how to design a hash function H that is

used to conceal the encryption keys. Then, given with
a key-generator (a Petri net supposed to possess a large
number of elementary T-invariants), we discuss how to
randomly generate a series of encryption keys, the ele-
mentary T-invariants. Finally, we show how to use these
encryption keys to encrypt a plain text to a cipher text
by applying a private-key cryptography, say DES [1).

2. Preliminary

The necessary definitions are given in the following.

Definition 1. A Petrinet {7] is a bipartite graph and ex-

pressed by PN= (T, P, E,a, 3}, where E=E+tUE~ and

T a set of transitions {t1,%2,---,4p}

P: a set of place {p1,p2, -, pp}

E*: aset of edges from transitions to places e=(t, p)
E~: a set of edges from places to transitions e=(p,)
a: ale) is the weight of edge e=(p, t)

B: B(e) is the weight of edge e=(t,p) (]

Definition 2.

(1) When there exist neither edge (p;, ;) nor edge (¢, ;)
for any p; and ¢; of a Petri net PN, PN is called
pure Petri net. The P—T incidence matrix of a pure
Petri net is expressed by N=N+—N-=[N}]-[N,],

where,
N+_.{ Be if e=(t,p) N—_{ ae if e=(p,?)
P71 0 otherwise, ~#* | 0 otherwise.

(2) Token distribution to places is called marking and
expressed by M=(m;,my,---,mp|)!, where, m; is
the number of tokens at p;. If capacity of all the
places is no more than k then PN is k-bounded.

(3) A traunsition sequence o is called firing sequence from
M to Mp, if the firing simulation of o on M can be
carried out all the way to the last element of &, which
leads to the marking My, The marking transition is
expressed by Mlo> My and the firing numbers of all
the transitions are expressed by a firing count vector
J=(j1,42,* *,Jyry)t. The relationship among N, J,
M7 and Mp can be expressed by Mp=M+NJ. O
All the Petri nets used in this paper are supposed to

be pure ones.

Definition 3.

(1) A non-negative vector J satisfying NJ=0 is called T-
invariant and the set of transitions Tr={;€T|5#0}
ig called support of J.

57 |

ITC-CSCC 2002

Kez Generator™

Sender

=

Receiver

} Lov
you

Figure 1. The proposed public-key cryptography: MEPKC

{2) For a T-invariant J with support Ty, if there exists
no such T-invariant J' whose support Ty satisfies
Ty CTy, then T is called minimum support. Further
for a T-invariant J with minimum support 77, if all
the values {7;|t;€T;} have no common divisor then
J is called elementary T-invariant.]
The proposed cryptography MEPKC is illustrated in

Fig.1. The public key is <N, H>, where N is a key

generator that is P-T incidence matrix of a Petri net PN

and H is a hash function that maps an elementary T-

invariant J§ to a value V;=H(Jf) in order to conceal the

elementary T-invariant. The private key is <{J£}, H>,
where {J£} is the set of all the elementary T-invariants
of PN and H is a reverse hash function H:V;—Jf. The

3. On encryption of MEPKC

In the followings, we focus our discussions to the follow-
ing problems on encryption of MEPKC: (1) How to de-
sign a hash function H; (2) How to randomly generates
a series of encryption keys, the elementary T-invariants
{Jg > Jg,» - JE} from a given Petri net’s P-T incidence
matrix N; and (3) How to use these encryption keys to
encrypt a plaintext by using a private-key cryptography.

3.1 Designing hash function H

We first discuss on how to design a so strong hash
function H that it is impossible to deduce an ele-
mentary T-invariant J¢ from V=H(J¢). We random-

encryption and decryption are as following.
Encryption: Given with a plaintext P, a sender
at first generates a series of elementary T-invariants
{455 dE, s - 5, } randomly from key generator N and
then uses these elementary T-invariants to do encryption
operations stage by stage. The first encryption stage is
as follows: (i) a plaintext P is encrypted to a ciphertext
C{ by a private-key cryptography (e.g. DES), in which
Ji, is used as the encryption key; (ii) J§, is mapped to
Vi, by the hash function H; (iii) C1=(C], Vi,) is treat-
ed as the ciphertext of the first encryption stage. And
i-th encryption stage is similar as the first stage and
the only difference is that the ciphertext C;_; is treated
as a plaintext of i-th stage. The sender sends the final
ciphertext Ci=(C}, Vi,) to the receiver,

Decryption: Receiving the ciphertext £;=(C}, Vi,), the
receiver takes out V4, from C; and uses V4, to deduce J§,
by the reverse hash function . Further, using J§, to do
decryption (of the private-key cryptography) for C/, the
sender gets the (I—1)-th ciphertext C;_,=(C]_,,Vi,_,)-
Repeating this decryption operation successively, the o-
riginal plaintext P is finally obtained.

The security of MEPKC relies on such a property of
Petri nets that it is extremely difficult to compute all the
elementary T-invariants for a given Petri net PN, but is
comparatively easy to compute a part of them. And if
we repeat enough many encryption stages, the resultant
ciphertext can get to such strong security as we expect.

ly generate two vectors, By and Ry, both with [7]-
dimension. Then for a given elementary T-invariant

Je=(5¢, 55, -, j'eﬂ)‘, we make a complement vector of
its support, §jc=(%1,32,+-,5y7))* where
- _J1 ifj5=0
%=1 0 otherwise.
Using Ry and Rg, we give our hash function as
V=H(J*)=(Rn)" T +(R0)*S s«
Theorem 1. The problem to deduce J¢ from V=H(J¢)
is NP-complete. o
The above theorem is true, since it is a N P-complete
problem even to find out J¢ from V'=(Ry)tJ¢, which is
subset sum problem [8]. Obviously, it is more difficult to
deduce J¢ from V than to solve a subset sum problem.
Therefore our hash function is strong enough to conceal
the encryption key J.

3.2 Random generation of encryption keys

For a given Petri net PN with its P-T incidence matrix
N, we can apply Linear Programming and Gauss-Jordan
reduction process to randomly generate a series of ele-
mentary T-invariants.

Theoretically, a rational non-negative solution J of
N J=0 can be obtained by solving the following formu-
lation without doing division operations.

Minimize: W = 1tZ

Subject to:

ITC-CSCC 2002

Table 1. An initial simplex tableau

base | j1 Jz2 Jds Je« Js Js iz J9 2z z2 %3 24 35 xg | const.
Z1 -2 -5 1 1 0
22 2 5 a1 -2 1 [}
23 1 2 3 -4 1 0
z4 3 4 -1 1 0
z5 1 -1 1 0
26 1 1 1 1 1 1 1 1 1 1

= 1 -1 -1 -1 -1 1 a1 1 1

J1

"11‘ "”Tl 1 P [} Q M 0
. . Jn — :
SUIRL LI A B IR V-
: ¢

Z[Pi+1

J15 00 dns 21500 2P 14220

where, 14y is the element of N, z; is the artificial variable
and c is a positive integer.
Theorem 2.[9] If a rational solution J of the above
formulation is obtained by simplex method with W=0,
then (i) J can be converted into a T-invariant by mul-
tiplying an appropriate integer; and (ii) the support of
such a converted T-invariant is minimum. a
Practically, we can efficiently compute an elementary
T-invariant by doing the followings.

o Simply using simplex method (allowing division op-
erations) to obtain a non-negative solution with
W=0. Thus a support T is obtained.

» Deleting all the artificial variables and treat the vari-
ables related to the transitions in T'; as the basic

variables to obtain a non-negative integer solution

by Gauss-Jordan reduction process.

Generally during the simplex procedure, plural vari-
ables may be the candidates of basic variables. There-
fore if we randomly select the candidates as basic vari-
ables, then an unspecified elementary T-invariant can
be obtained. To randomly obtain a series of unspecified
elementary T-invariants, we need only to change the ba-
sic variables from the previously obtained elementary
T-invariants by doing Gauss-Jordan reduction process.
To avoid generating duplicated elementary T-invariants,
the searching method proposed in Ref. [10] is useful.

3.3 Encryption of plain texts by using DES

Since a Petri net PN used as a key-generator is assumed
to possess a large amount of elementary T-invariants,
PN must have enough many transitions (say more than
several hundreds transitions). Thus an elementary T-
invariant may have many elements and further most
of them are of value 0. As an encryption key used to
encrypt a plaintext by a private-key cryptography (say
3DES that limits the length of encryption key to 1024
bytes), an elementary T-invariant Jf may be too long
and we need to compress it into a shorter one K;. The
compression method, here we are to propose, is as fol-
lows:

o Basically concatenate the values of all the elements

into an integer.

Figure 2. A Petri net used as key generator

¢ During the concatenation, if there are k same value
D continuously appears (e.g. 123 123 123 123), then
we compress them into kD (4123). Especially, if the
value D is 0 then we simply write k (4).
According to the above proposed methods, we can
realize the encryption of MEPKC.

4. An example

Here we are to give an example to show how encryption
of MEPKC works. We carry out two stage encryption to
encrypt a plain text P= “I love you.” to a cipher text.

The Petri net shown in Fig.2 is used as key generator.
(1) Determination of hash fanction H
We first generate two random vectors with [T'|-
dimension, Ry and Rp, as follows:
Bv=(3 719 12 6 81 20)°
Ro=(4 19 17 10 8 3 2 5)°
Thus the hash function is determined as:
V=H(J®)=(Rn)'J*+(Ro)'S s
(2) Generation of encryption keys
To generate encryption keys, we give the following LP
formulation.
Minimize = 1tZ

Subject to:]

2-5 000000 11 O 7

2 5-1-2 0 0 0 0 0 1 : 0
001 2-3-4000 1 . .
00003 4-1-3 0 1 f: :
0100001 3-1 1 1 o
111111111 01 1

26

jl""9j9;z11"'az620
where, z;,--+,2s are the artificial variables. Table 1

shows the initial simplex tableau. From this table, we
can find that at the beginning all the variables, 74, -, jg,
are possible to be selected as basic variables. Here
we first select ja as one basic variable. Then gradu-
ally, ja, js, Js, jo are selected through simplex operation.

ITC-CSCC 2002

Table 2. The table obtained by dividing basic and non-
basic variables and deleting artificial variables

J2__J& Je _J8 Jo 1 Js Js jy | comst.
-2 5 0 0 0 0 0 0 1 0

2 5§ 1 -2 0 0 0 0 O 0

0 1 2 -3 -4 0 0 0 O 0

0 0 o0 3 4 -1 -3 0 o0 0

0 0 V] V) 0 0 1 3 -1 0

1 1 1 1 1 1 1 1 1 1

Table 3. The table after Gauss-Jordan reduction process

J2 Ja Jg Js Jo __J1 J3 Js Jj7 | const.

137 0 0 0 0 62 6 3 8 12
0 214 0] 0 36 167 156 40 60
0 0 214 0 0 18 15 3 20 30
0 0 0 137 0 12 10 5 59 20
0 0 0 0 137 36 30 15 40 60

Thus a support Ty={ja, ja, je, Js, jo} i5 obtained. We di-
vide the basic and non-basic variables and further delete
all the artificial variables to obtain a table as shown in
Table 2. For Table 2, we do Gauss-Jordan reduction
process to get a new table as shown in Table 3. Thus an
elementary T-invariant J is obtained.

e =(0 120 3 0 15 0 20 60)°
For Table 3, we can randomly select the variables
(from 71, j3, J5, j7) as the possible basic variables to
exchange the basic variables. Here we first select js
and then the second elementary T-invariant is finally
obtained.
% =(0 6 0 15 10 0 0 10 30)°

(3) Encryption of the plain text P

The private-key cryptography used here is 3DES.
First we use hash function H to conceal these two keys
and compress them as follows:

Vi, =H(Jg,)=1670, Jg, - K : 01203001502060;
Via=H(Jg,)=931, Jg — Kj: 060151021030.

e Encryption of 1st stage:
Using the compressed key K as the encryption key
to encrypt P by 3DES, we get the following cipher
text Ci:

| OPBLKH) (#°1/G: :WWAVR;>P |

Combing C] and V;, to get the resultant cipher text
C, of the 1st stage encryption:

OPBLKH) [#°1/G: :WWAVR;>P
1670

"o Encryption of 2nd stage:
Treating C; as a plain text and using K> to encrypt
Ci1, we get the following cipher text Cj:

OK$JOMVDO F~HN\Q@ LON7.
%] (507"~ [MN4EYY’ /38<

Combing €}, and Vj,, we get the final cipher text:

OK$JOMVOO F~HN\Q@ &ON7.
%] (507"~ [MN4EYY’/38<
931

5. Concluding remarks

We have proposed the methods how to do encryption
of a proposed public-key cryptography MEPKC. A hash
function has been proposed, which is NP-complete and
thus is strong enough to conceal encryption keys from
attack. A method to randomly generate the encryption
keys has been given by applying Linear Programming
and Gauss-Jordan reduction process. Further we have
proposed the way to encrypt a plain text to a cipher
text by using a private-key cryptography 3DES. Finally,
we have given an example to concretely show how our
proposed methods are adopted.

As the future works related to realization of the con-
ception of MEPKC, we need to (i) make a prototype
encryption system to evaluate our proposed encryption
methods; and (ii) propose the methods how to design
the private key of MEPKC and to do the decryption
operations.

References

[1] A. Salomaa, Public-Key Cryptography, Springer-
Verlag Berlin Heidelberg, 1990.

[2) R.L.Rivest, A.Shamir and L.Adleman, “A method
of obtaining digital signatures and public-Key cryp-
tosystems”, Comm. of ACM, vol.21, no.2, pp.120-
126, 1978.

[3] T.ElGamal, “A public key cryptosystem and a
signature scheme based on discrete logarithms”,
IEEETrans. in Information Theory, vol.IT-31,n0.4,
pp.469-472, 1985.

[4] T.Okamoto and S.Uchiyama, “Recent topics of
public-key cryptography: 1. On the security of el-
liptic curve cryptosystems”, IPSJ Magazine, vol.39,
10.12, pp.1252-1257, 1998.

[5] Simson Garfinkel, PGP: Pretty Good Privacy,
O'Reilly & Associates, 1994.

(6] Q-W.Ge, C.Shigenaga, and R.Wu, “A Petri Net
based New Conception of Public-Key Cryptogra-
phy”, Proceeding of ICFS2002, pp.S5-37 - $5-42,
2002.

[7) J.Peterson, Petri Net Theory and the Modeling of
Systems, Englewood Cliffs, NJ: Prectice-Hall, 1981.

[8] M.R.Garey and D.S.Johson, Computers and In-
tractability (A Guide to the Theory of NP-
Completeness), W.H.Freeman and Company, New
York, 1991.

[9) Q.-W.Ge, T.Tanida, N.Ono and K.Onaga, “Con-
struction of a T-base and design of a periodic firing
sequence of a live and bounded Petri net”, Proc.
Twenty-fifth Annual Allerton Conference, pp.51-57,
1987.

[10] T.Araki, T.Tanida, T.Watanabe and K.Onaga, “A
linear programming-based algorithm for successive-
ly enumerating elementary invariants of Petri net-
s”, Technical Report of IEICE, pp.125-132 (CAS89-
89), 1989.

ITC-CSCC 2002

