Along with the advancement of deep learning technology, securing high-quality dataset for verification of developed technology is emerging as an important issue, and developing robust deep learning models to the domestic road environment is focused by many research groups. Especially, unlike expressways and automobile-only roads, in the complex city driving environment, various dynamic objects such as motorbikes, electric kickboards, large buses/truck, freight cars, pedestrians, and traffic lights are mixed in city road. In this paper, we built our dataset through multi camera-based processing (collection, refinement, and annotation) including the various objects in the city road and estimated quality and validity of our dataset by using YOLO-based model in object detection. Then, quantitative evaluation of our dataset is performed by comparing with the public dataset and qualitative evaluation of it is performed by comparing with experiment results using open platform. We generated our 2D dataset based on annotation rules of KITTI/COCO dataset, and compared the performance with the public dataset using the evaluation rules of KITTI/COCO dataset. As a result of comparison with public dataset, our dataset shows about 3 to 53% higher performance and thus the effectiveness of our dataset was validated.
Public datasets, which are freely available and often labeled, play a crucial role in training object detection models in computer vision. While public datasets are effective for developing general object detection models, they may not be ideal for specialized tasks. For specific object detection needs, it is more beneficial to create and use a dataset tailored to the target object. This paper proposes a method for extracting a target-specific dataset from public datasets to develop object detection models with superior performance for the target object. This approach not only improves detection accuracy, but also reduces training data requirements and complexity. We evaluate the performance of the proposed method using the latest object detection model YOLOv10.
2019년부터 국가기록원의 주도로 행정정보데이터세트 기록관리체계 구축 시범사업이 본격적으로 시작되었다. 2021년까지 3년에 걸친 사업의 결과를 바탕으로 개선된 행정정보데이터세트 관리방안이 공공기록물 관련 법령과 지침에 반영될 예정이다. 이를 통해 행정정보데이터세트는 본격적인 공공기록관리의 대상이 된다. 공공기록이 전자문서 중심으로 전환되었고 행정정보시스템의 데이터세트까지 본격적인 공공기록관리의 대상으로 포함되었지만, 기록을 구성하는 원 자료(raw data)로서의 데이터 자체의 품질 요건에 관한 연구는 아직 부족한 상황이다. 데이터 품질이 보장되지 않으면 데이터의 구성체이며 기록의 집합체인 데이터세트는 기록의 4대 속성 전체가 위협받게 된다. 더욱이 표준기록관리시스템의 규격을 고려하지 않고 기관 실무 부서의 다양한 요구를 반영하여 구축된 행정정보시스템의 데이터는 기록관리 관점에서 그 품질에 대한 신뢰성이 부족할 경우 공공기록 자체의 신뢰성을 확보할 수 없을 것이다. 본 연구는 2021년 국가기록원에서 진행한 "행정정보데이터세트 기록정보 서비스 및 활용모형 연구"에서 제시된 행정정보데이터세트 관리방안을 기반으로, 적극적으로 개념이 확장된 평가, 그중에서 데이터 품질평가에 관한 연구를 수행하였다. 범정부적으로 추진되고 있는 다양한 데이터, 특히 공공 데이터 관련 정책과 가이드를 참고하여 기록관리 차원에서의 품질평가 요건을 도출하고, 구체적인 지표를 제시해 보고자 한다. 이를 통해 향후 본격화될 행정정보데이터세트 기록관리에 도움이 되기를 기대한다.
행정정보데이터세트 관리의 시급성과 중요성을 인식하고 실무에 적용 가능한 실효성 있는 방안을 연구하는 것이 필요하다. 특히 데이터세트 평가를 위해 데이터세트 기록을 식별하고 기록관리를 위한 기준을 정하는 일은 상세하고 구체적으로 제시될 필요가 있다. 본 연구는 공공기관에서 운영 중인 행정정보시스템 데이터세트를 대상으로 데이터세트 식별과 평가 과정을 설계하고 검증하였다. 이와 함께 평가 과정에서 기록관을 비롯한 참여 주체들의 역할을 제시하였다. 본 연구 결과를 통해 기록관에서 데이터세트 기록 관리를 위한 구체적이고 실질적인 프로세스 및 도구를 개발하기 위한 유용한 시사점을 도출하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.365-380
/
2022
The target detection algorithm based on supervised learning is the current mainstream algorithm for target detection. A high-quality dataset is the prerequisite for the target detection algorithm to obtain good detection performance. The larger the number and quality of the dataset, the stronger the generalization ability of the model, that is, the dataset determines the upper limit of the model learning. The convolutional neural network optimizes the network parameters in a strong supervision method. The error is calculated by comparing the predicted frame with the manually labeled real frame, and then the error is passed into the network for continuous optimization. Strongly supervised learning mainly relies on a large number of images as models for continuous learning, so the number and quality of images directly affect the results of learning. This paper proposes a dataset STAR-24K (meaning a dataset for Space TArget Recognition with more than 24,000 images) for detecting common targets in space. Since there is currently no publicly available dataset for space target detection, we extracted some pictures from a series of channels such as pictures and videos released by the official websites of NASA (National Aeronautics and Space Administration) and ESA (The European Space Agency) and expanded them to 24,451 pictures. We evaluate popular object detection algorithms to build a benchmark. Our STAR-24K dataset is publicly available at https://github.com/Zzz-zcy/STAR-24K.
공공 부문의 정보시스템 의존도가 점차 높아지면서 행정정보 시스템에 축적되는 데이터세트 기록의 관리와 활용에 관한 다양한 방안이 모색되고 있다. 행정정보 데이터세트를 아카이브 시스템이나 공유서버로 이관할 때 데이터 보정이나 품질 개선의 요구가 발생할 수 있다. 이 논문의 목적은 데이터웨어하우스 구축을 위해 데이터를 추출하여 변형 후 전송하는 절차와 방법을 참조하여 이관하는 행정정보 데이터세트 기록의 보정 및 품질 개선 방법을 제시하는 것이다. 이 논문에서는 데이터세트 기록 이관 시 검토할 필요가 있는 전형적인 데이터 보정 및 품질 개선 사례로 (1)추출 시 데이터세트 수량과 유효값 확인, (2)일관된 코드값의 부여를 위한 코드 변환, (3)복합정보의 컴포넌트화, (4)날짜데이터의 정밀도 결정, (5)데이터 표준화, (6)코드값의 설명정보 (7)메타데이터 확보 등 7가지를 제시하고 각각의 처리방법을 제안하고 있다. 데이터세트 기록 이관 시 적용하는 데이터 보정 및 품질 개선 기준은 데이터세트를 생산하는 행정정보시스템의 데이터 품질요건으로 활용할 수 있다.
최근 건설 현장의 안전사고 비율은 전체 산업에서 가장 높은 비중을 차지한다. 인공지능 기술을 건설 현장에 접목하기 위해서는 기초 학습 자료로 활용될 수 있는 데이터셋 확보가 필수적이다. 본 논문에서는 실제 현장 확보를 통해 원천 데이터를 수집하였으며, 토목 현장에서 주로 운용되고 있는 주요 건설장비 객체를 선정하고 약 9만장의 정지영상 데이터셋 가공을 통해 최적의 학습 데이터셋 구축을 완료하였다. 또한, 객체 인식분야의 대표적인 모델인 YOLO를 활용하여 구축된 데이터의 검증 작업을 수행하였고 90 % 근접한 검출 성능을 확인해 데이터 신뢰성을 확보하였다. 본 연구에서 사용되는 학습 데이터셋은 공공데이터포털에서 활용 가능하도록 공개를 완료하였다. 본 데이터셋은 향후 건설안전 분야의 객체 인식 기술의 건설현장 적용을 위한 기반 데이터로 활용 가능하리라 판단된다.
오늘날 대학의 신입생 충원율이 급감하면서 대학의 폐교가 새로운 문제로 등장함에 따라 폐교대학의 기록물 관리가 새로운 이슈로 다뤄지고 있다. 최근 사립학교법이 개정되면서 폐교 기록물 관리를 위한 기본적인 법적 토대가 마련되었지만, 전자기록 중 행정정보 데이터세트에 관한 사항은 반영되지 못한 상태이다. 또한 공공기록물법의 개정에 따라 폐교대학의 행정정보 데이터세트도 공공기록물로서 관리되어야 하나 현재 폐교대학의 기록물 관리는 비전자기록물의 이관이나 정리에 관한 이슈가 주를 이룬다. 본 연구는 이러한 현실을 지적하며 폐교대학 행정정보 데이터세트를 공공기록물로서 관리하기 위한 방안을 도출하는 것에 중점을 두었다. 기본적으로 각종 참고문헌 및 기관의 내부자료를 바탕으로 데이터세트에 관한 이론적 논의를 검토하고 폐교대학 데이터세트 관리현황을 파악하였다. 최종적으로는 폐교대학 통합정보관리시스템의 데이터 관리를 위한 방안으로 기록화 대상 선정, 보존기간 책정, 행정정보 데이터세트 관리기준표 작성, 행정정보 데이터 세트 평가·삭제, 폐교대학 행정정보 데이터세트 종합관리체계 구축 등을 제시하였다.
2020년 「공공기록물에 관한 법률 시행령」 개정에 따라 행정정보 데이터세트 기록관리 방안이 법제화되며, 국가기록원은 행정정보 데이터세트 기록관리 업무를 지원하기 위해 행정정보 데이터세트 종합관리시스템을 구축할 계획을 밝혔다. 하지만 데이터세트와 관리 기준표의 특성을 고려한 구체적인 서비스 방안은 부재한 작금이다. 이에 본 논문은 국내·외 공공데이터 포털 및 기록관 웹사이트 14곳을 대상으로 데이터세트 서비스 현황을 비교 분석하고 시사점을 도출하여 행정정보 데이터세트 종합관리시스템에 적용 가능한 서비스 방안 6가지를 제안했다. 본 연구의 결과가 행정정보 데이터세트 활용 및 서비스 활성화로 이어지기를 기대한다.
『공공기록물 관리에 관한 법률』이 제정된 2007년부터 이미 행정정보시스템이 전자기록생산시스템에 포함되었으며, 행정정보 데이터세트는 전자기록물의 한 유형으로 관리 대상임이 명시되었다. 특히 최근 시행령의 개정으로 행정정보 데이터세트 관리기준표를 기반으로 한 기록관리가 법제화된 상황 속에서, 본 연구는 공공기관의 행정정보시스템과 관련된 단위과제를 분석하고 유형별 보존기간 책정 현황을 파악하였다. 이를 위해 국가기록원의 직접관리기관과 재난관리 책임기관 49개 기관으로부터 36개 공공기관의 기록물 분류체계를 수집하여 행정정보시스템과 관련된 단위과제를 판별하였다. 선별된 824개 단위과제를 유형에 따라 대·소분류로 구분하고 보존기간을 비교, 분석하였다. 본 연구를 통해 도출된 문제점과 개선방안이 향후 행정정보 데이터세트 관리기준표를 작성하기 위한 기초자료로 활용되길 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.