• Title/Summary/Keyword: Public Service Robot

Search Result 31, Processing Time 0.027 seconds

Development of Range Sensor Based Integrated Navigation System for Indoor Service Robots (실내용 서비스 로봇을 위한 거리 센서 기반의 통합 자율 주행 시스템 개발)

  • Kim Gunhee;Kim Munsang;Chung Woojin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.9
    • /
    • pp.785-798
    • /
    • 2004
  • This paper introduces the development of a range sensor based integrated navigation system for a multi-functional indoor service robot, called PSR (Public Service Robot System). The proposed navigation system includes hardware integration for sensors and actuators, the development of crucial navigation algorithms like mapping, localization, and path planning, and planning scheme such as error/fault handling. Major advantages of the proposed system are as follows: 1) A range sensor based generalized navigation system. 2) No need for the modification of environments. 3) Intelligent navigation-related components. 4) Framework supporting the selection of multiple behaviors and error/fault handling schemes. Experimental results are presented in order to show the feasibility of the proposed navigation system. The result of this research has been successfully applied to our three service robots in a variety of task domains including a delivery, a patrol, a guide, and a floor cleaning task.

Optimization-based humanoid robot navigation using monocular camera within indoor environment

  • Han, Young-Joong;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.446-457
    • /
    • 2018
  • Robot navigation allows robot mobility. Therefore, mobility is an area of robotics that has been actively investigated since robots were first developed. In recent years, interest in personal service robots for homes and public facilities has increased. As a result, robot navigation within the home environment, which is an indoor environment, is being actively investigated. However, the problem with conventional navigation algorithms is that they require a large computation time for their building mapping and path planning processes. This problem makes it difficult to cope with an environment that changes in real-time. Therefore, we propose a humanoid robot navigation algorithm consisting of an image processing and optimization algorithm. This algorithm realizes navigation with less computation time than conventional navigation algorithms using map building and path planning processes, and can cope with an environment that changes in real-time.

Secure Scheme Between Nodes in Cloud Robotics Platform (Cloud Robotics Platform 환경에서 Node간 안전한 통신 기법)

  • Kim, Hyungjoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.595-602
    • /
    • 2021
  • The robot is developing into a software-oriented shape that recognizes the surrounding situation and is given a task. Cloud Robotics Platform is a method to support Service Oriented Architecture shape for robots, and it is a cloud-based method to provide necessary tasks and motion controllers depending on the situation. As it evolves into a humanoid robot, the robot will be used to help humans in generalized daily life according to the three robot principles. Therefore, in addition to robots for specific individuals, robots as public goods that can help all humans depending on the situation will be universal. Therefore, the importance of information security in the Cloud Robotics Computing environment is analyzed to be composed of people, robots, service applications on the cloud that give intelligence to robots, and a cloud bridge that connects robots and clouds. It will become an indispensable element for In this paper, we propose a Security Scheme that can provide security for communication between people, robots, cloud bridges, and cloud systems in the Cloud Robotics Computing environment for intelligent robots, enabling robot services that are safe from hacking and protect personal information.

Design and Implementation of Visual/Control Communication Protocol for Home Automated Robot Interaction and Control (홈오토메이션을 위한 영상/로봇제어 시스템의 설계와 구현)

  • Cho, Myung-Ji;Kim, Seong-Whan
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.27-36
    • /
    • 2009
  • PSTN (public switched telephone network) provides voice communication service, whereas IP network provides data oriented service, and we can use IP network for multimedia transport service (e.g. voice over IP service) with economic price. In this paper, we propose RoIP (robot on IP) service scenario, signaling call flow, and implementation to provide home automation and monitoring service for remote site users. In our scheme, we used a extended SIP (session initiation protocol) for signaling protocol between remote site users and home robots. For our bearer transport control, we implemented H.263 video codec over RTP (real-time transport protocol) and additionally DTMF (dual tone multi-frequency) transport for robot actuator control. We implemented our scheme on home robots and experimented with KTF operator network, and it shows good communication quality (average MOS = 9.15) and flexible robot controls.

  • PDF

A Internet of Things(IoT) based exploration robot design for remote control and monitoring (사물인터넷(IoT) 기반 원격 제어 및 모니터링이 가능한 탐사로봇 설계)

  • Kim, Byung-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.185-190
    • /
    • 2015
  • The trend of Internet of things are changed from public and examples of corporate center to B2C service. As you can see, through the practice of domestic and international services Internet of Things, conventional disaster, disasters, such as the case of the public sector, factory automation company now mainly direct B2C (Business to Consumer) services are affecting the individual has spread. In this paper we propose a method of platforms and components, and network configuration plan for exploration robot design based on remote control and monitoring system with IoT.

Backward motion control of a mobile robot with n passive trailers

  • Park, Myoung-Kuk;Chung, Woo-Jin;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1190-1195
    • /
    • 2003
  • In this paper, it is shown how a robot with n passive trailers can be controlled in backward direction. When driving backward direction, a kinematic model of the system is represented highly nonlinear equations. The problem is formulated as a trajectory following problem, rather than control of independent generalized coordinates. Also, the state and input saturation problems are formulated as a trajectory generation problem. The trajectory is traced by a rear hinge point of the last trailer, and reference trajectories include line segments, circular shapes and rectangular turns. Experimental verifications were carried out with the PSR-2(public service robot $2^{nd}$ version) with three passive trailers. Experimental result showed that the backward motion control can be successfully carried out using the proposed control scheme.

  • PDF

A Directional Perception System based on Human Detection for Public Guide Robots (공공 안내 로봇을 위한 인체 검출 기반의 방향성 감지 시스템)

  • Doh, Tae-Yong;Baek, Jeong-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.481-488
    • /
    • 2010
  • Most public guide robots installed in public spots such as exhibition halls and lobbies of department store etc., have poor capability to distinguish the users who require services. As to provide suitable services, public guide robots should have a human detection system that makes it possible to evaluate intention of customers from their movement direction. In this paper, a DPS (Directional Perception System) is realized based on face detection technology. In particular, to catch human movement efficiently and reduce computational time, human detection technology using face rectangle, which is obtained from the human face, is developed. DPS determines which customer needs services of public guide robots by investigating the size and direction of face rectangle. If DPS is adapted, guide service will be provided with more satisfaction and reliability, and power efficiency also can be added up because public guide robots provide services only for the users who expresses their intentions of wanting services explicitly. Finally, through several experiments, the feasibility of the proposed DPS is verified.

Ubiquitous Sensor Network based Localization System for Public Guide Robot (서비스 로봇을 위한 유비쿼터스 센서 네트워크 기반 위치 인식 시스템)

  • Choi, Hyoung-Youn;Park, Jin-Joo;Moon, Young-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1920-1926
    • /
    • 2006
  • With social interest, there hie been a lot of research on the Service Robot but now we are faced with the limitation of single platform. The alternative plan is the Ubiquitous-based Service Robot connected with a Ubiquitous network to overcome this limitation. Systems using RFID(Radio frequency Identification) and supersonic waves appeared for functions such as recognition of surroundings through Ubiquitous Sensor Networks. This was applied to the real robot and we have got good results. However, this has several limitations to applying to low power-based Sensor Network For example, if RFID uses a passive Sensor, the rate of recognition with the distance is limited. In case of supersonic waves, high power is required to drive them. Therefore, we intend to develop RSSI position recognition system on the basis of embodying a Sensor Network Module in this thesis. This RSSI position recognition system only measures RSSI of signals from each sensor nod. then converts them into distances and calculates the position. As a result, we can still use low power-based Sensor Network and overcome the limitation according to distance as planning Ad-Hoc Network.

Development of Walking Assistive System using Body Weight Supporting and Path Planning Strategy (인체 자중 보상 및 로봇 경로계획법을 이용한 이동형 보행 재활 시스템 개발)

  • Yu, Seung-Nam;Shon, Woong-Hee;Suh, Seung-Whan;Lee, Sang-Ho;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.939-947
    • /
    • 2010
  • With the rising numbers of elderly and disabled people, the demand for welfare services using a robotic system and not involving human effort is likewise increasing. This study deals with a mobile-robot system combined with a BWS (Body Weight Support) system for gait rehabilitation. The BWS system is designed via the kinematic analysis of the robot's body-lifting characteristics and of the walking guide system that controls the total rehabilitation system integrated in the mobile robot. This mobile platform is operated by utilizing the AGV (Autonomous Guided Vehicle) driving algorithm. Especially, the method that integrates geometric path tracking and obstacle avoidance for a nonholonomic mobile robot is applied so that the system can be operated in an area where the elderly users are expected to be situated, such as in a public hospital or a rehabilitation center. The mobile robot follows the path by moving through the turning radius supplied by the pure-pursuit method which is one of the existing geometric path-tracking methods. The effectiveness of the proposed method is verified through the real experiments those are conducted for path tracking with static- and dynamic-obstacle avoidance. Finally, through the EMG (Electromyography) signal measurement of the subject, the performance of the proposed system in a real operation condition is evaluated.

A RodSecurityRobot Model (로드경비로봇 모델 연구)

  • Yang, Keyong-ae;Shin, Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.401-406
    • /
    • 2018
  • According to the National Security Service of the National Police Agency, intrusion into empty houses increased form 2013 to 2016. Consequentially this statistics seemed that house intrusion, burglary is increasing. Also according to the statistics of Public Prosecutors'Office, a total 203,573 theft crimes occurered in 2016, of which 18.9% were theft after intruding. By reson of this is most frequent case of intrusion and theft, we have been studing the RodSecurityRobot model to enhance security in many factories to manage. In order to care for security to the high place, we have propsed a road guard robot model which controls the ground in cooperation with the robot that manages the ground by using the drones. The robot and the drone move together to autonomy to avoid objects. And they check time interval. they also goes to the charger to charge when there is no battery.