• Title/Summary/Keyword: PtRuW

Search Result 26, Processing Time 0.026 seconds

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II) (산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II))

  • Park, Young-Seek;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.61-72
    • /
    • 2009
  • Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.

Quantitative Determination of $UO2^{2+}$ with Modified $[Ru(v-bpy)_3]^{2+}$ Polymer Film Electrode (수식된 $[Ru(v-bpy)_3]^{2+}$ 고분자 피막전극을 이용한 U(VI)의 정량)

  • Cha, Seong-Keuck
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.17-23
    • /
    • 2000
  • Electrodes of the polycationic film with electropolymerized $[Ru(v-bpy)_3]^{2+}$ having about 1:1 ratio of $PF6^-/ClO_4^-$as the doped counter ions, were modified with xylenol orange and diethylditbiocarbamate by ion exchange which had stability constant as 38.6 and 17.5 respectively. These electrodes were employed in the quantitative multiple determination of U(W) in solution. The working electrode of electrochemical cell for the analytical signal was Pt/p-$[Ru(v-bpy)_3]^{2+}$, ligand, U(VI) with Ag/AgCl reference elecrode. In the stripping voltammetry. electrode process was electron transfer controlled one and calibration curves at the ranges of $1.0{\times}10^{-3}{\sim}1.0{\times}10^{-7}$ M had excellent relationship as 0.99 and relative standard deviation as 5${\sim}$8%.

  • PDF

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(I) (산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(I))

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.49-60
    • /
    • 2009
  • Fabrication and oxidants formation of 1 and 2 component metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru, Pt, Sn, Sb and Gd) were used for the 1 and 2 component electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1 h. The removed RhB per 2 min and unit W for one component electrode decreased in the following sequences: Ru/Ti>Sb/Ti>Pt/Ti>Gd/Ti>Sn/Ti. The concentration of oxidants generated in 1 and 2 component electrodes was in the order of: $ClO_2$> free Cl>$H_2O_2>O_3$. OH radical was not generated from in entire one and two component electrodes. RhB degradation rate and generated oxidants of the Ru-Sn=9:1 electrode was higher than that of the two component electrode. The exact relationship between the removal of RhB and the generated oxidants concentration was not obvious. However, it was assumed that electrode with high RhB decolorization had high oxidant concentration.

Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell (메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성)

  • Nam, Ki-Don;Kim, Tae-Jin;Kim, Sang-Kyung;Lee, Byoung-Rok;Peck, Dong-Hyun;Ryu, Seung-Kon;Jung, Doo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.

Effective Dispersion of Electrode Catalysts for Direct Formic Acid Fuel Cells by Electrospray Method (정전분무법을 이용한 직접개미산 연료전지 전극촉매의 효율적인 분산)

  • Kwon, Byeong-Wan;Kim, Jin-Soo;Kwon, Yong-Chai;Han, Jong-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.262-267
    • /
    • 2008
  • Effective dispersion of noble metal Pt-Ru catalysts was conducted for the application of direct formic acid fuel cell(DFAFC) electrodes by electrospray method. The amount of catalysts deposited on the electrodes increased with increasing deposition time. However, the performance of cell test decreased with the deposition time after 80 min. because of agglomeration of catalysts. With the conventional hand-spray method, the density of the anode catalysts deposited was $3.0\;mg/cm^2$ and the maximum power density of the MEA was $74\;mW/cm^2$. On the other hand, the MEA prepared by the electrospray method, showed a similar power density of $72\;mW/cm^2$. However, the density of the anode catalysts deposited was much lower than the case of the hand-spray and the density the anode catalysts in this case was $1.85\;mg/cm^2$.

Assessment of direct glycerol alkaline fuel cell based on Au/C catalyst and microporous membrane

  • Yongprapat, Sarayut;Therdthianwong, Apichai;Therdthianwong, Supaporn
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.21-31
    • /
    • 2014
  • The use of a microporous membrane along with Au/C catalyst for direct glycerol alkaline fuel cell was investigated. In comparison with Nafion 112, the microporous Celgard 3401 membrane provides a better cell performance due to the lower ionic resistance as confirmed by impedance spectra. The single cell using Au/C as anode catalyst prepared by using PVA protection techniques provided a higher maximum power density than the single cell with commercial PtRu/C at $18.65mW\;cm^{-2}$ The short-term current decay studies show a better stability of Au/C single cell. The higher activity of Au/C over PtRu/C was owing to the lower activation loss of Awe. The magnitude of current decay indicates a low problem of glycerol crossover from anode to cathode side. The similar performance of single cell with and without humudification at cathode points out an adequate transport of water through the microporous membrane.

Perfonnance Evaluation of Single Cell and Stack of PolymerElectrolyte Fuel Cell by Using Transfer Printing Technique

  • KIM, CHANG SOO;CHUN, YOUNG-GAB;PECK, DONG-HYUN;YANG, TAE-HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • The polymer electrolyte membrane fuel cell (PEMFC) system was developed. In order to enhance the performance of membrane electrode assembly (MEA), the transfer printing method of the electrocatalyst layer on membrane was developed. The $H_2/O_2$ single cell with an electrode area of $50cm^2$ was fabricated and tested using 20 wt.% Pt/C as an electrocatalyst and the commercial and hand-made MEA such as Nafion 115, Hanwha, Dow, Flemion T and Gore Select. The 100-cell PEMFC stack with an active electrode area of $300cm^2$ was designed and fabricated using 40 wt.% Pt/C and 30 wt.% Pt-Ru/C as a cathode and anode electrocatalysts, respectively. The performance of PEMFC system was obtained to be 7kW (250A at 28V) and 3.5kW (70A at 50V) at $80^{\circ}C$ by flowing $H_2/air$ and methanol reformed fuel gas/air, respectively.

  • PDF

Characteristics of Electrolyte/Electrode Assemblies(MEA) for Polymer Electrolyte Fuel Cells(PEFC) (고분자 연료전지(PEFC)용 전해질/전극 접합체(MEA)의 특성)

  • Peck, D.H.;Chun, Y.G.;Kim, C.S.;Jung, D.H.;Shin, D.R.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1824-1826
    • /
    • 1999
  • In order to develop key technologies for a kW class for polymer electrolyte fuel cell (PEFC), various membranes (Nafion(112, 115, 117), Dow, Flemion, Gore, and Hanwha), and electrocatalysts (Pt/C, PtNi/C PtNiCo/C and PtRu/C) were used in the fabrication of the MEAs by using transfer printing technique. The effects of the thickness of Nafion membranes, electrocatalysts and the operating conditions (e.g. temperature, reactant gas pressure, and composition) on the performance of the MEA were investigated in the PEFC single cell($O_2/H_2$, and Air/$H_2$ cell). The performances of the MEAs for $O_2/H_2$ and Air/$H_2$ cells has been evaluated.

  • PDF