DOI QR코드

DOI QR Code

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(I)

산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(I)

  • Published : 2009.01.31

Abstract

Fabrication and oxidants formation of 1 and 2 component metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru, Pt, Sn, Sb and Gd) were used for the 1 and 2 component electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1 h. The removed RhB per 2 min and unit W for one component electrode decreased in the following sequences: Ru/Ti>Sb/Ti>Pt/Ti>Gd/Ti>Sn/Ti. The concentration of oxidants generated in 1 and 2 component electrodes was in the order of: $ClO_2$> free Cl>$H_2O_2>O_3$. OH radical was not generated from in entire one and two component electrodes. RhB degradation rate and generated oxidants of the Ru-Sn=9:1 electrode was higher than that of the two component electrode. The exact relationship between the removal of RhB and the generated oxidants concentration was not obvious. However, it was assumed that electrode with high RhB decolorization had high oxidant concentration.

Keywords

References

  1. 이성기, 송영일, 김현중, 진성기, 이양래, 허필우, 임의수, 2000, 초음파를 이용한 난분해성 유해폐수물질 처리기술, 대한상하수도학회. 한국물환경학회 공동추계학술발표회논문집, 263-266
  2. Lee K. W., Kim H. K., 2008, A study on the interrelation among organic pollutant indices of non-biodegradable paper wastewater, J. of Korean Soc. of Wat. Sci. and Tech., 16(1), 15-23
  3. Ha D. Y., Cho S. H., 2003, Comparison of UV/$H_20_2$ and $Ti0_2$ photocatalytic oxidation in the dying wastewater treatment efficiency, J. of Korean Soc. of Environ. Eng., 25(9), 1123-1131
  4. Yoon Y. S., 2003, Electrolytic treatment of municipal wastewater, J. of the Korean Soc. for Environ. Anal., 6(2), 125-132
  5. Chae S. K., 2007, A study on the removal characteristics of hospital wastewater by electrolysis, J. of Korean Soc. of Wat. Sci. and Tech., 15(3), 71-79
  6. Chen G., 2004, Electrochemical technologies in wastewater treatment, Sep. and Purifi. Tech., 38, 11-41 https://doi.org/10.1016/j.seppur.2003.10.006
  7. Yu H. C., Park S. C., 2007, Electrochemical treatment of wastewater containing Fluoride, J. of Korean Soc. of Environ. Eng., 29(10), 1126-1130
  8. Yu J. J., Min K. S., Park J. M., 2003, Treatment characteristics of refractory compounds in dying wastewater by electrocatalytic electrode, J. of Korean Soc. of Environ. Eng., 25(10), 1277-1282
  9. Kim K. W., Lee E. H., Kim J. S., Choi J. G., Shin K. H., Lee S. H., Kim K. H., 2000, Fabrication and material properties of Ru-Sn-Ti ternary mixed oxide/Ti electrode(I), Korean J. Chem. Eng., 38(6), 774-782
  10. Simond O., Schaller V., Comnillis C., 1997, Theoretical model for the anodic oxidation of organics on metal oxide electrodes, Electrochemica Acta, 4 (13/14), 2009-2012 https://doi.org/10.1016/S0013-4686(97)85475-8
  11. Park Y. S., Kim D. S., 2007, Inactivation of Legionella pneumophila by electrochemical disinfection, J. of Korean Soc. on Wat. Qual., 23(5), 613-619
  12. Park Y. S., 2008, Decolorization of a Rhodamine B using Ru-graphite electrode, J. of the Environ. Sci., 17(5), 547-553 https://doi.org/10.5322/JES.2008.17.5.547
  13. Yi Z., Kangning C., Wei W., Wang J., Lee S., 2007, effect of $IrO_2$ loading on $RuO_2-lrO_2-TiO_2$ anodes: a study of microstructure and working life for the chi orine evolution reaction, Ceramics Int., 33, 1087-1091 https://doi.org/10.1016/j.ceramint.2006.03.025
  14. Chen X., Chcn G., Yue P. L., 2001, Stable $Ti/IrO_x-Sb_2O_5-SnO_2$Anode for $O_2$ Evolution with Low Ir Content, J. Phys. Chem. B., 105, 4623-4628 https://doi.org/10.1021/jp010038d
  15. Chen G., Chen X., Yue P. L., 2002, Electrochemical Behavior of Novel $Ti/IrO_2-Sb_20_5-SnO_2$ Anodcs, J. Phys. Chem. B., 106, 4364-4369 https://doi.org/10.1021/jp013547o
  16. Correa-Lozano B., Comrnninellis C., Battisti A. D., 1996, Electrochemical Properties of $Ti/SnO_2-Sb_2O_5$ Electrodes Prepared by the Spray Pyrolysis Technique, J. of Appl. Electrochem., 26, 683-688 https://doi.org/10.1007/BF00241508
  17. Feng J., Li X. Y., 2003, Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution, Wat. Res., 37, 2399-2407 https://doi.org/10.1016/S0043-1354(03)00026-5
  18. Lee B. R., Chung Y. J., Lee C. Y., Nam C. W., 1995, A study on the electrolytic ozone generation using Lead dioxide electrode, Korean J. Chem. Eng., 33(1), 39-45
  19. Feng Y., Cu Y., Logan B., Liu Z., 2008, Performance of Gd-doped Ti-based Sb-SnOz anodes for electrochemical destruction of phenol, Chemosphere, 70, 1629-1636 https://doi.org/10.1016/j.chemosphere.2007.07.083
  20. Szpyrkowitz L., Juzzolino C., Kaul S. N., 2001, A comparative study on oxidation of disperse dyes by elcctrochemical process, ozonc, hydrochloridc and Fenton reagent, Wat. Res., 35(9), 2129-2136 https://doi.org/10.1016/S0043-1354(00)00487-5
  21. Kotz R., Stucki S., Career B., 1991, Electrochemical waste water treatment using high overvoltage anodes. part I: physical and electrochemical properties of $SnO_2$ anodes, J. of Appl. Elcctrochem., 21, 14-20 https://doi.org/10.1007/BF01103823
  22. Lipp L., Pletcher D., 1997, The preparation and characterization of tin dioxide-coated titanium electrodes, Electrochem. Acta, 42, 1091-1099 https://doi.org/10.1016/S0013-4686(96)00257-5
  23. Cossu R., Polcaro A. M., Lavagnolo M. C., Mascia M., Palmas S., Renoldi F., 1998, Electrochemical treatment of landfill leachate: oxidation at $Ti/PbO_2$ and $Ti/SnO_2$ anodes, Environ. Sci. Technol., 32, 3570-3573 https://doi.org/10.1021/es971094o
  24. Panizza M., Cerisola G., 2007, Electrocatalytic materials for the electrochemical oxidation of synthetic dyes, Appl. Catal. B: Environ., 75, 95-101 https://doi.org/10.1016/j.apcatb.2007.04.001
  25. Nanni L., Polizzi S., Bencdctti A., Battisti A. D., 1999, Morphology, microstructure, and electrocatalytic properties of $RuO_2-SnO_2$ thin films, J. Electrochem. Soc., 146, 220-225 https://doi.org/10.1149/1.1391590

Cited by

  1. Degradation of Rhodamine B in Water using Solid Polymer Electrolyte (SPE) in the Electrolysis Process vol.40, pp.2, 2014, https://doi.org/10.5668/JEHS.2014.40.2.137