• 제목/요약/키워드: PtM catalyst

검색결과 117건 처리시간 0.022초

산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조 (Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction)

  • 이영근;안건형;안효진
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Pt-Ru/C 촉매를 이용한 직접메탄을 연료전지 운전 특성 (Operating Characteristics of Direct Methanol Fuel Cell Based on Pt-Ru/C Anode Catalyst)

  • 정두환;이창형;김창수;전영갑;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1252-1254
    • /
    • 1997
  • Direct methanol fuel cell based on a proton-exchange membrane electrolyte was investigated. 60% Pt-Ru/C and 60%Pt/C catalysts were employed for methanol oxidation and oxygen reduction, respectively. Morphologies of the catalysts were investigated by x-ray power diffraction, energy dispersive x-ray spectroscopy, and transmission microscopy. Electrochemical characteristics of the catalysts were tested by using cyclic voltametry technique. I-V characteristics of the fuel cell were tested by changing methanol concentration, temperature, and Nafion type as a proton-exchange membrane electrolyte. AC impedance technique was used to investigate the electrochemical performance of the fuel cell. The performance of single cell was enhance with increasing cell temperature. High operation temperature attributed to the combined effects of the reduction of ohmic resistance and polarization. High cell voltage was obtained from the concentration of 205M methanol. With Nafion 112, a current density of $230mA/cm^2$ at 0.55V was obtained from the concentration of 2.5M methanol.

  • PDF

ZnO 나노선 기반의 가스센서에서 Pt 촉매가 감도에 미치는 영향 (Effects of pt catalyst on the sensitivity of ZnO nanowire gas sensor)

  • 정태환;권순일;박승범;이석진;양계준;임동건;박재환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.281-281
    • /
    • 2008
  • 최근 높은 비표면적, 우수한 결정성, 나노스케일의 크기 등 다양한 물리 화학적 특성을 지닌 1차원 나노구조체를 이용한 가스센서 연구가 활발히 진행되고 있다. 가스센서는 네트워크 된 나노선들 이용하여 벌크, 박막 보다 극대화된 비표면적으로 가스 감도와 반응 속도를 향상시킬 수 있었다. 촉매 첨가를 위해 Acetylacetone 용액 7 ml에 10 mM이 되도록 Pt 분말을 첨가하여 촉매용액을 제조하였다. 마이크로피펫을 이용하여 미량을 센서의 감응체 부문에 뿌려 대기 중에서 건조한 후 센서의 감도를 측정하였다. 측정은 $250^{\circ}C$에서 일산화탄소 가스 500 ppm의 가스농도로 촉정하였을 때 촉매가 첨가된 센서가 70% 이상의 개선된 감도를 나타내었다. 이는 나노선에 분산된 촉매에 주입되는 가스가 흡착되고 다시 표면의 산소와 반응하여 전기전도도를 변화시키는 것으로 보인다. 첨가된 촉매에 대한 영향을 분석하기 위해 AES, XRD, FT-IR, TEM 등의 분석을 실시하였다.

  • PDF

안티몬 도핑된 주석 산화물에 담지된 백금 촉매의 에탄올 산화 반응 및 안정성 연구 (Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide)

  • 이국승;박희영;전태열;성영은
    • 전기화학회지
    • /
    • 제11권3호
    • /
    • pp.141-146
    • /
    • 2008
  • 안티몬 도핑된 주석 산화물(ATO)에 담지된 백금 촉매(Pt/ATO)의 에탄올 산화반응에 대한 활성과 전기화학적 안정성을 평가하였다. Pt 콜로이드 입자를 ATO 입자에 담지하여 Pt/ATO 촉매를 제조하였으며, 제조된 촉매는 X-ray diffraction, transmission electron microscopy (TEM), 그리고 cyclic voltammetry를 이용하여 평가하였다. Pt/ATO 촉매의 에탄올 산화 활성은 Pt/C, PtRu/C에 비해 크게 우수하였다. Pt/ATO 촉매의 전기화학적 안정성 또한 Pt/C에 비해 우수하였으며, TEM 사진을 통하여 확인한 결과 Pt/ATO의 안정성은 Pt입자의 성장 속도가 Pt/C에 비해 느리기 때문인 것으로 확인되었다. 위의 결과로부터 ATO 나노입자가 직접 에탄올 연료전지용 담지체로서, 활성 및 안정성 향상을 기대할 수 있는 물질임을 확인하였다.

Recent Developments of Metal-N-C Catalysts Toward Oxygen Reduction Reaction for Anion Exchange Membrane Fuel Cell: A Review

  • Jong Gyeong Kim;Youngin Cho;Chanho Pak
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권2호
    • /
    • pp.207-219
    • /
    • 2024
  • Metal-N-C (MNC) catalysts have been anticipated as promising candidates for oxygen reduction reaction (ORR) to achieve low-cost polymer electrolyte membrane fuel cells. The structure of the M-Nx moiety enabled a high catalytic activity that was not observed in previously reported transition metal nanoparticle-based catalysts. Despite progress in non-precious metal catalysts, the low density of active sites of MNCs, which resulted in lower single-cell performance than Pt/C, needs to be resolved for practical application. This review focused on the recent studies and methodologies aimed to overcome these limitations and develop an inexpensive catalyst with excellent activity and durability in an alkaline environment. It included the possibility of non-precious metals as active materials for ORR catalysts, starting from Co phthalocyanine as ORR catalyst and the development of methodologies (e.g., metal-coordinated N-containing polymers, metal-organic frameworks) to form active sites, M-Nx moieties. Thereafter, the motivation, procedures, and progress of the latest research on the design of catalyst morphology for improved mass transport ability and active site engineering that allowed the promoted ORR kinetics were discussed.

H2-O2 재결합 반응을 통한 M/γ-Al2O3 촉매의 산소 제거 성능과 산소 결손이 촉매에 미치는 영향 (Oxygen Removal Performance of M/γ-Al2O3 Catalyst through H2-O2 Recombination Reaction and the Effect of Oxygen Vacancies on the Catalyst)

  • 김태준;푸트라쿠마르 발라;신대섭;송유정;김성탁
    • 한국수소및신에너지학회논문집
    • /
    • 제34권5호
    • /
    • pp.535-548
    • /
    • 2023
  • The intermittent nature of renewable energy is a challenge to overcome for safety and stable performance in water electrolysis systems linked to renewable energy. Oxygen removal using the catalyst is suitable for maintaining the oxygen concentration in hydrogen below the explosive level (4%) even in intermittent power supply. Metals such as Pd, Pt, and Ni are expected to be effective materials due to their hydrogen affinity. The oxygen removal performance was compared under high hydrogen concentration conditions by loading on γ-Al2O3 with high reactivity and large surface area. The characteristics of the catalyst before and after the reaction were analyzed through X-ray diffraction, transmission electron microscope, H2-temperature programmed reduction, X-ray photoelectron spectroscope, etc. The Pd catalyst that showed the best performance was able to lower 2% oxygen to less than 5 ppm. Changes in catalyst characteristics after the reaction indicate that oxygen vacancies are related to oxygen removal performance and catalyst deactivation.

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

제일원리전산을 이용한 연료전지용 나노 스케일 백금 합금촉매에 대한 열역학적 구조 분석 (A First Principles Study on Nano-scale Pt Alloy Structures for Fuel Cell Catalysts)

  • 노승효;한병찬
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.217-221
    • /
    • 2012
  • Over the last decade, performances of low temperature fuel cells are substantially improved by developing highly active Pt-M alloy catalysts. The electrochemical stability of those catalysts, however, still does not meet the commercial grade for fuel cells to be long-term power sources of electrical vehicles. To unveil a major mechanism causing such weak durability, we extensively utilize ab-initio computations on nano-scale Pt-Co alloy catalysts and analyze thermodynamically the most stable structure as a function of compositional variation. Our results indicate that there is a certain feature governing the particle distribution of a specific alloy element on the nano-scale catalysts, which aggravates the electrochemical degradation.

  • PDF

Electrochemical Reduction of High Pressure Carbon Dioxide on Metal Electrodes and Gas Diffusion Electrodes

  • Hara, Kohjiro;Sakata, Tadayoshi
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.683-689
    • /
    • 1995
  • Electrochemical reduction of carbon dioxide under high pressure on Fe electrodes and a gas diffusion electrode containing Pt catalyst (Pt-GDE) had been investigated. Formic acid was formed on Fe electrode with a faradaic efficiency of 60% at a current density of $120mA\;cm^{-2}$ under 30 atm of $CO_2$. Hydrocarbons such as $CH_4$, $C_2H_6$, $C_3H_6$, $1-C_4H_8$, and $n-C_5H_{12}$ are also formed. The distribution of hydrocarbons followed well the Schultz-Flory distribution. $CH_4$ was formed efficiently as the main reduction product on Pt-GDE.

  • PDF