• Title/Summary/Keyword: Pt-Cnts

Search Result 15, Processing Time 0.02 seconds

The development of complex electrode for fuel cell using CNT (CNT를 이용한 PEMFC 연료전지용 복합전극 개발)

  • Ok, Jinhee;Altalsukh, Dorjgotov;Rhee, Junki;Park, Sangsun;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.135.2-135.2
    • /
    • 2010
  • Carbon nanotube(CNT) has been spotlighted as a promising candidate for catalyst support material for PEMFC (proton exchange membrane fuel cell). The considerable properties of CNT include high surface area, outstanding thermal, electrical conductivity and mechanical stability. In this study, to fully utilize the properties of CNTs, we prepared directly oriented CNT on carbon paper as a catalyst support in the cathode electrode. The CNT layer was prepared by a chemical vapor deposition(CVD) process. And the Pt particles were deposited on the CNT oriented carbon paper by impregnation and eletro-deposition method. The potential advantages of directly oriented CNT on carbon paper can include improved thermal and charge transfer through direct contact between the electrolyte and the electrode and enhanced exposure of Pt catalyst sites during the reaction.

  • PDF

Precise Resistivity Measurement Independent Of Contact Resistance Influence And Its Applications

  • Kim, Dae-Hyun;Ryu, Hye-Yeon;Ji, Hyun-Jin;Lee, Jae-Woo;Kim, Gyu-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.146-147
    • /
    • 2007
  • A universal four-point contact measurement method, has an advantage of non-existence of contact resistance, is demonstrated by the experiments with carbon nanotubes and ZnO nanowire. Ti/Au and Pt are tried to compare the influence of contact resistance between two different metals. These metals are selected to make Ohmic contact and Schottky contact originated from their different work functions. For precise experiments, Ti/Au and Pt are separately evaporated to form double 'four-point contact electrodes' on CNTs or ZnO, and the voltage-current characteristics are measured. This method can be applied to universal resistivity measurement for nanotubes and nanowires.

  • PDF

Exposure of Laboratory Workers to Airborne Nanoparticles during Acid Treatments on Engineered Carbon Nanotubes (탄소나노튜브 표면 처리 실험실 종사자의 공기중 나노입자 노출에 관한 연구)

  • Ha, Ju-Hyun;Shin, Yong-Chul;Lee, Seung-Chul;Paik, Samuel Y.;Kim, Boo-Wook;Choi, Byung-Soon;Kang, Dong-Mug;Paik, Nam-Won
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.343-350
    • /
    • 2010
  • This study was performed to investigate laboratory workers' exposures to airborne nanoparticles at a university laboratory where acid treatment experiments were conducted on the surfaces of engineered carbon nanotubes (CNTs). The surface area concentrations, number concentrations, and mass concentrations of airborne nanoparticles were measured at personal breathing zones (PBZs) for various tasks using direct reading instruments. For all three metrics, airborne nanoparticle concentrations during the experiments were higher than background levels measured before and after the experiments for all three metrics. Among the various tasks that were performed as part of these experiments, one task that involved filtering a mixture of acid and CNTs showed the highest concentrations in all three metrics, with concentrations of $116.6\;{\mu}m^2$/cc, 24320 pt/cc, and $9.0\;{\mu}g/m^3$, respectively. Nanoparticle surface area concentrations measured at a representative area fluctuated with those at the PBZs in the laboratory. This result indicates that nanoparticles generated during the experiments were not just limited to the PBZs of the workers but were also present throughout the room, potentially exposing co-located workers. CNTs were detected by a transmission electron microscope in an air sample collected while handling the CNTs. All the tasks were performed inside fume hoods, with the sliding sashes open to their required heights. It was noted that the capture velocities of the fume hoods were much lower than the American National Standards Institute (ANSI)'s recommendation level (0.4 to 0.6 m/s). In conclusion, this study showed that, due to inadequate control, laboratory researchers performing acid treatment experiments on surfaces of CNTs were exposed to airborne nanoparticles generated during the tasks.

Spray-coated Carbon Nanotube Counter Electrodes for Dye-sensitized Solar Cells

  • Lee, Won-Jae;Lee, Dong-Yun;Kim, In-Sung;Jeong, Soon-Jong;Song, Jae-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.140-143
    • /
    • 2005
  • Carbon Nanotube(CNTs) counter electrode is a promising alternative to Platinum counter electrode for dye sensitized solar cells (DSSCs). In this study, CNT counter electrodes having different visible light transmittance were prepared on fluorine-doped tin oxide (FTO) glass surface by spray coating method. Microstructural images show that there are CNT-tangled region coated on FTO glass counter electrodes. Using such CNT counter electrodes and screen printed $TiO_2$ electrodes, DSSCs were assembled and its I-V characteristics have been studied and compared. Light energy conversion efficiency of DSSCs increased with decreasing in light transmittance of CNT counter electrode. Efficiency of DSSCs having CNT counter electrode is compatible to that of Pt counter electrode.

Effect of Transparency of CNT counter electrodes on the Efficiency of DSSCs

  • Lee, Won-Jae;Ramasamy, Easwaramoorthi;Lee, Dong-Yun;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.615-616
    • /
    • 2005
  • Carbon Nanotubes (CNT) on flexible indium tin oxide (ITO) PET films were prepared for dye-sensitized solar cell (DSSC). These CNTs were prepared by spray coating method for various amount of light transparency. Also, Pt counter electrode was prepared by electro deposition method. All $TiO_2$ electrodes were deposited on ITO-PET films by spray coating method. Micro structural images show that CNT counter electrodes prepared by spray-coating have more dense structure with increasing spraying time (0 to 60 seconds). DSSC consisting of $TiO_2$ electrode and CNT counter electrode was fabricated with various amount of light absorption. DSSC have higher light energy conversion efficiency with increasing the thickness of CNT counter electrode. CNT counter electrode is at least compatible to that of CNT counter electrode.

  • PDF