• 제목/요약/키워드: Pt metal-mask

검색결과 11건 처리시간 0.03초

Dewetting된 Pt Islands를 Etch Mask로 사용한 GaN 나노구조 제작 (Fabrication of Nanostructures by Dry Etching Using Dewetted Pt Islands as Etch-masks)

  • 김택승;이지면
    • 한국재료학회지
    • /
    • 제16권3호
    • /
    • pp.151-156
    • /
    • 2006
  • A method for fabrication of nano-scale GaN structure by inductively coupled plasma etching is proposed, exploiting a thermal dewetting of Pt thin film as an etch mask. The nano-scale Pt metal islands were formed by the dewetting of 2-dimensional film on $SiO_2$ dielectric materials during rapid thermal annealing process. For the case of 30 nm thick Pt films, pattern formation and dewetting was initiated at temperatures greater $600^{\circ}C$. Controlling the annealing temperature and time as well as the thickness of the Pt metal film affected the size and density of Pt islands. The activation energy for the formation of Pt metal island was calculated to be 23.2 KJ/mole. The islands show good resistance to dry etching by a $CF_4$ based plasma for dielectric etching indicating that the metal islands produced by dewetting are suitable for use as an etch mask in the fabrication of nano-scale structures.

Fabrication of Hot Electron Based Photovoltaic Systems using Metal-semiconductor Schottky Diode

  • Lee, Young-Keun;Jung, Chan-Ho;Park, Jong-Hyurk;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.305-305
    • /
    • 2010
  • It is known that a pulse of electrons of high kinetic energy (1-3 eV) in metals can be generated with the deposition of external energy to the surface such as in the absorption of light or in exothermic chemical processes. These energetic electrons are not in thermal equilibrium with the metal atoms and are called "hot electrons" The concept of photon energy conversion to hot electron flow was suggested by Eric McFarland and Tang who directly measured the photocurrent on gold thin film of metal-semiconductor ($TiO_2$) Schottky diodes [1]. In order to utilize this scheme, we have fabricated metal-semiconductor Schottky diodes that are made of Pt or Au as a metallic layer, Si or $TiO_2$ as a semiconducting substrate. The Pt/$TiO_2$ and Pt/Si Schottky diodes are made by PECVD (Plasma Enhanced Chemical Vapor Deposition) for $SiO_2$, magnetron sputtering process for $TiO_2$, e-beam evaporation for metallic layers. Metal shadow mask is made for device alignment in device fabrication process. We measured photocurrent on Pt/n-Si diodes under AM1.5G. The incident photon to current conversion efficiency (IPCE) at different wavelengths was measured on the diodes. We also show that the steady-state flow of hot electrons generated from photon absorption can be directly probed with $Pt/TiO_2$ Schottky diodes [2]. We will discuss possible approaches to improve the efficiency of photon energy conversion.

  • PDF

Pt 금속마스크를 이용하여 제작한 나노패턴 Si(111) 기판위에 성장한 GaN 박막 특성 (Characterization of GaN epitaxial layer grown on nano-patterned Si(111) substrate using Pt metal-mask)

  • 김종옥;임기영
    • 마이크로전자및패키징학회지
    • /
    • 제21권3호
    • /
    • pp.67-71
    • /
    • 2014
  • 본 연구에서는 Si(111) 기판을 이용하여 고품질의 GaN 박막을 성장하기 위하여 다양한 패턴을 갖는 Si 기판을 제작하였다. Si(111) 기판위에 이온 스퍼터(ion-sputter)를 이용하여 Pt 박막을 증착한 후 열처리(thermal annealing)하여 Pt 금속 마스크를 형성하고 유도 결합 플라즈마 이온 식각(inductively coupled plasma-reactive ion etching, ICP-RIE) 공정을 통하여 기둥(pillar)형태의 나노 패턴된 Si(111) 기판을 제작하였고 리소그래피 공정을 통하여 마이크로 패턴된 Si(111) 기판을 제작하였다. 일반적인 Si(111) 기판, 마이크로 패턴된 Si(111) 기판 및 나노 패턴된 Si(111) 기판위에 유기화학기상증착(metal organic chemical vapor deposition, MOCVD) 방법으로 GaN 박막을 성장하여 표면 특성과 결정성 및 광학적 특성을 분석하였다. 나노 패턴된 Si(111) 기판위에 성장한 GaN 박막은 일반적인Si(111) 기판과 마이크로 패턴된 Si(111) 기판위에 성장한 GaN 박막보다 표면의 균열과 거칠기가 개선되었다. 나노 패턴된 Si(111) 기판위에 성장한 GaN (002)면과 (102)면에 x-선 회절(x-ray diffraction, XRD) 피크의 반폭치(full width at half maximum, FWHM)는 576 arcsec, 828 arcsec으로 다른 두 기판위에 성장한 GaN 박막 보다 가장 낮은 값을 보여 결정성이 향상되었음을 확인하였다. Photoluminescence(PL)의 반폭치는 나노 패턴된 Si(111) 기판위에 성장한 GaN 박막이 46.5 meV으로 다른 기판위에 성장한 GaN 박막과 비교하여 광학적 특성이 향상되었음을 확인하였다.

CMOS공정 기반의 저전력 NO 마이크로가스센서의 제작 (Fabrication of low power NO micro gas senor by using CMOS compatible process)

  • 신한재;송갑득;이홍진;홍영호;이덕동
    • 센서학회지
    • /
    • 제17권1호
    • /
    • pp.35-40
    • /
    • 2008
  • Low power bridge type micro gas sensors were fabricated by micro machining technology with TMAH (Tetra Methyl Ammonium Hydroxide) solution. The sensing devices with different heater materials such as metal and poly-silicon were obtained using CMOS (Complementary Metal Oxide Semiconductor) compatible process. The tellurium films as a sensing layer were deposited on the micro machined substrate using shadow silicon mask. The low power micro gas sensors showed high sensitivity to NO with high speed. The pure tellurium film used micro gas sensor showed good sensitivity than transition metal (Pt, Ti) used tellurium film.

악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발 (Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive)

  • 정완영;심창현
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

나노 박막을 이용한 듀얼 $SnO_2$ 마이크로 가스센서 어레이 (A Dual Micro Gas Sensor Array with Nano Sized $SnO_2$ Thin Film)

  • 정완영
    • 한국정보통신학회논문지
    • /
    • 제10권9호
    • /
    • pp.1641-1647
    • /
    • 2006
  • 나노입자 크기를 가진 얇은 $SnO_2$ 박막을 이용하여 CO 및 $H_2S$에 대한 우수한 감도를 가지는 복합 마이크로 가스센서 어레이를 제작하였다. 나노입자의 박막을 만들기 위해서 약 $2500{\AA}$ 두께의 $SnO_2,\;SnO_2(+Pt),\;SnO_2(+CuO)$ 막을 셰도우마스크를 사용하여 형성 한 후, 이를 $600{\sim}800^{\circ}C$의 온도에서 산화하므로서 나노입자의 $SnO_2$ 모물질의 가스감지 박막을 형성하였다. 실리콘 기판의 마이크로센서의 형태로 제작된 $SnO_2(Pt)$$SnO_2(+CuO)$ 가스센서는 각각 CO 및 $H_2S$ 가스에 대한 매우 우수한 감도를 나타내는 것을 확인하였다.

Investigation on Etch Characteristics of FePt Magnetic Thin Films Using a $CH_4$/Ar Plasma

  • Kim, Eun-Ho;Lee, Hwa-Won;Lee, Tae-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.167-167
    • /
    • 2011
  • Magnetic random access memory (MRAM) is one of the prospective semiconductor memories for next generation. It has the excellent features including nonvolatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack is composed of various magnetic materials, metals, and a tunneling barrier layer. For the successful realization of high density MRAM, the etching process of magnetic materials should be developed. Among various magnetic materials, FePt has been used for pinned layer of MTJ stack. The previous etch study of FePt magnetic thin films was carried out using $CH_4/O_2/NH_3$. It reported only the etch characteristics with respect to the variation of RF bias powers. In this study, the etch characteristics of FePt thin films have been investigated using an inductively coupled plasma reactive ion etcher in various etch chemistries containing $CH_4$/Ar and $CH_4/O_2/Ar$ gas mixes. TiN thin film was employed as a hard mask. FePt thin films are etched by varying the gas concentration. The etch characteristics have been investigated in terms of etch rate, etch selectivity and etch profile. Furthermore, x-ray photoelectron spectroscopy is applied to elucidate the etch mechanism of FePt thin films in $CH_4$/Ar and $CH_4/O_2/Ar$ chemistries.

  • PDF

The Influence of $O_2$ Gas on the Etch Characteristics of FePt Thin Films in $CH_4/O_2/Ar$ gas

  • Lee, Il-Hoon;Lee, Tea-Young;Chung, Chee-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.408-408
    • /
    • 2012
  • It is well known that magnetic random access memory (MRAM) is nonvolatile memory devices using ferromagnetic materials. MRAM has the merits such as fast access time, unlimited read/write endurance and nonvolatility. Although DRAM has many advantages containing high storage density, fast access time and low power consumption, it becomes volatile when the power is turned off. Owing to the attractive advantages of MRAM, MRAM is being spotlighted as an alternative device in the future. MRAM consists of magnetic tunnel junction (MTJ) stack and complementary metal- oxide semiconductor (CMOS). MTJ stacks are composed of various magnetic materials. FePt thin films are used as a pinned layer of MTJ stack. Up to date, an inductively coupled plasma reactive ion etching (ICPRIE) method of MTJ stacks showed better results in terms of etch rate and etch profile than any other methods such as ion milling, chemical assisted ion etching (CAIE), reactive ion etching (RIE). In order to improve etch profiles without redepositon, a better etching process of MTJ stack needs to be developed by using different etch gases and etch parameters. In this research, influences of $O_2$ gas on the etching characteristics of FePt thin films were investigated. FePt thin films were etched using ICPRIE in $CH_4/O_2/Ar$ gas mix. The etch rate and the etch selectivity were investigated in various $O_2$ concentrations. The etch profiles were studied in varying etch parameters such as coil rf power, dc-bias voltage, and gas pressure. TiN was employed as a hard mask. For observation etch profiles, field emission scanning electron microscopy (FESEM) was used.

  • PDF

나노 구체 리소그라피법에 Ashing과 Annealing 효과를 적용하여 크기조절 가능한 나노패턴의 제조 (Size Tunable Nano Patterns Using Nanosphere Lithography with Ashing and Annealing Effect)

  • 이유림;마흐붑 알람;김진열;정우광;김승대
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.550-554
    • /
    • 2010
  • This work presents a fabrication procedure to make large-area, size-tunable, periodically different shape metal arrays using nanosphere lithography (NSL) combined with ashing and annealing. A polystyrene (PS, 580 ${\mu}m$) monolayer, which was used as a mask, was obtained with a mixed solution of PS in methanol by multi-step spin coating. The mask morphology was changed by oxygen RIE (Reactive Ion Etching) ashing and temperature processing by microwave heating. The Au or Pt deposition resulted in size tunable nano patterns with different morphologies such as hole and dots. These processes allow outstanding control of the size and morphology of the particles. Various sizes of hole patterns were obtained by reducing the size of the PS sphere through the ashing process, and by increasing the size of the PS sphere through annealing treatment, which resulted in tcontrolling the size of the metallic nanoparticles from 30 nm to 230 nm.

Chemical Solution Deposition of PZT/Oxide Electrode Thin Film Capacitors and Their Micro-patterning by using SAM

  • Suzuki, Hisao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.907-912
    • /
    • 2005
  • Micro-patterns of $Pb(Zr_{0.53}Ti_{0.47})O_3$, PZT, thin films with a MPB composition were deposited on $Pt/Ti/SiO_2/Si$ substrate from molecular-designed PZT precursor solution by using self-assembledmonolayer(SAM) as a template. This method includes deposition of SAM followed by the optical etching by exposing the SAM to the UV-light, leading to the patterned SAM as a selective deposition template. The pattern of SAM was formed by irradiating UV-light to the SAM on a substrate and/or patterned PZT thin film through a metal mask for the selective deposition of patterned PZT or lanthanum nickel oxide (LNO) precursor films from alkoxide-based precursor solutions. As a result, patterned ferroelectric PZT and PZT/LNO thin film capacitors with good electrical properties in micrometer size could be successfully deposited.

  • PDF