• Title/Summary/Keyword: Pseudomonas syringae pv

Search Result 136, Processing Time 0.027 seconds

Occurrence of Leaf Spot Disease on Watermelon Caused by Pseudomonas syringae pv. syringae (Pseudomonas syringae pv. syringae에 의한 수박 잎점무늬병의 발생)

  • Park, Kyoung-Soo;Lee, Ji-Hye;Kim, Young-Tak;Kim, Hye-Seong;Lee, June-woo;Lee, Hyun-Su;Lee, Hyok-In;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.180-186
    • /
    • 2021
  • Typical bacterial symptoms, water-soaking brown and black leaf spots with yellow halo, were observed on watermelon seedlings in nursery and field of Gyeongnam and Jeonnam provinces. Bacterial isolates from the lesion showed strong pathogenicity on watermelon and zucchini. One of them was rod-shaped with 4 polar flagella by observation of transmission electron microscopy. They belonged to LOPAT group 1. The phylogenical trees with nucleotide sequences of 16S rRNA and multi-locus sequencing typing with the 4 house-keeping genes (gapA, gltA, gyrB, and rpoD) of the isolates showed they were highly homologous to Pseudomonas syringae pv. syringae and grouped together with them, indicating that they were appeared as P. syringae genomospecies group 1. Morphological, physiological, and genetical characteristics of the isolates suggested they are P. syringae pv. syringae. We believe this is the first report that P. syringae pv. syringae caused leaf spot disease on watermelon in the Republic of Korea.

A Data Base for Identification of Pseudomonas syringae pv. actinidiae, the Pathogen of Kiwifruit Bacterial Canker, Using Biolog Program (Biolog Program을 이용한 참다래 궤양병균 동정용 Data Base)

  • 고영진
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.125-128
    • /
    • 1997
  • Reactions of Pseudomonas syringae pv. actinidiae to 95 carbon sources in a 96-well microplate (BiOLOG GN MicroPlateTM) were investigated. The bacterium used 9 carbon sources such as D-mannitol, sucrose, etc., but did not use 62 carbon sources such as $\alpha$-cyclodextrin, dextrin, etc. Based on the reactions, a user data base for identification of P. syringae pv. actinidiae was constructed in Biolog program (BiOLOG MicroLogTM 2 system). P. syringae pv. actinidiae isolates collected from kiwifruits could be identified automatically with high similarity using the user data base, which could diagnose rapidly and easily whether the tree was infected with bacterial canker or not.

  • PDF

Plasmid Profiles of Pseudomonas syringae pv. syringae Isolated from Kiwifruit Plants in Korea and the Copper Resistance Determinant (우리나라에서 분리된 참다래 꽃썩음병 병원세균(Pseudomonas syringae pv. syringae)의 플라스미드와 Cu 저항성 유전자)

  • Park, So-Yeon;Han, Hyo-Shim;Lee, Young-Sun;Koh, Young-Jin;Shin, Jong-Sup;Jung, Jae-Sung
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.337-340
    • /
    • 2007
  • Pseudomonas syringae Pv. syringae is a causal agent of bacterial blossom blight of kiwifruit in Korea. Eleven strains of the pathogen were isolated from different kiwifruit orchards in Korea and the plasmid profiles were obtained by pulsed-field gel electrophoresis. They could be clustered into six groups according to the number and size of plasmids. The number of plasmids per strain and size of these plasmids ranged from 0 to 4 and from 22 to 160 kb, respectively. Among them, four strains belonging to Group III which harbored two plasmids were resistant to copper sulfate. Southern blot hybridization of the plasmid DNA indicated that the copper resistance determinant was carried on a 48 kb plasmid.

Streptomycin Resistant Genes of Pseudomonas syringae pv. syringae, the Causal Agent of Bacterial Blossom Blight of Kiwifruit (참다래 꽃썩음병 병원세균(Pseudomonas syringae pv. syringae)의 스트렙토마이신 저항성 유전자)

  • Park, So-Yeon;Han, Hyo-Shim;Lee, Young-Sun;Koh, Young-Jin;Jung, Jae-Sung
    • Research in Plant Disease
    • /
    • v.13 no.2
    • /
    • pp.88-92
    • /
    • 2007
  • A total of 41 Pseudomonas syringae pv. syringae, the causal agent of bacterial blossom blight, were isolated from kiwifruit plants in Korea. Among them, two strains showing streptomycin resistance were examined to investigate the structure of resistant determinants by PCR and nucleotide sequence analysis. PCR results suggested that the streptomycin resistance is mediated by strA-strB genes carried on Tn5393a. Insertion sequences, IS6100 and IS1133, which were located within or downstream of tnpR gene in Xanthomonas campestris and Erwinia amylovora were not found. Nucleotide sequences of strA-strB were 100% identical with Tn5393a. Two stretomycin resistant strains had three plasmids. Southern blot hybridization using strA-strB probe indicated that the resistant genes were carried on a 100kb plasmid.

Bacterial Spot Disease of Green Pumpkin by Pseudomonas syringae pv. syringae (Pseudomonas syringae pv. syringae에 의한 애호박 세균점무늬병)

  • Park, Kyoung-Soo;Kim, Young-Tak;Kim, Hye-Seong;Lee, Ji-Hye;Lee, Hyok-In;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.158-167
    • /
    • 2016
  • A pathogen that causes a new disease on green pumpkin in the nursery and the field was characterized and identified. Symptoms of the disease on green pumpkin were water soaking lesions and spots with strong yellow halo on leaf, brown lesion on flower, and yellow spot on fruit. The bacterial isolates from the leaf spot were pathogenic on the 8 curcubitaceae crop plants, green pumpkin, figleaf gourd, wax gourd, young pumpkin, zucchini, cucumber, melon, and oriental melon, whereas they did not cause the disease on sweet pumpkin and watermelon. They were Gram-negative, rod shape with polar flagella, fluorescent on King's B agar and LOPAT group 1a by LOPAT test. Their Biolog substrate utilization patterns were similar to Pseudomonas syringae pv. syringae's in Biolog database. Phylogenetic trees with 16S rRNA gene sequences and multilocus sequence typing (MLST) with nucleotide sequences of 4 housekeeping genes, gapA, gltA, gyrB, rpoD and those of P. syringae complex strains in the Plant Associated and Environmental Microbes Database (PAMDB) showed that the green pumpkin isolates formed in the same clade with P. syringae pv. syringae strains. The clade in MLST tree was in the genomospecies 1 group. The phenotypic and genotypic characteristics suggested that the isolates from green pumpkin lesion were P. syringae pv. syringae.

Bacterial Canker of Japanese Apricot (Prunus mume) Caused by Pseudomonas syringae pv. morsprunorum (Pseudomonas syringae pv. morsprunorum에 의한 매실의 세균성궤양성)

  • Kim Doo Young;Han Hyo Shim;Koh Young Jin;Jung Jae Sung
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.135-139
    • /
    • 2005
  • Bacterial canker of Japanese apricot (Prunus mume Sieb. et Zucc.) was found in all orchards located at southern area of Korea. Typical symptoms were characterized by dark spots formed on fruits, brown lesions on leaves, and bacterial exudate oozed out of the cracked bark of diseased tree. Thirty-eight isolates from 16 different areas were identified on the basis of biochemical and physiological characteristics (LOPAT and GATTa test) and also on the basis of 165 rDNA and ITS sequences. Pathogenicity tests confirmed that bacterial canker of Japanese apricot in Korea is caused by Pseudomonas syringae pv. morsprunorum.

PCR-based Assay for the Specific Detection of Pseudomonas syringae pv. tagetis using an AFLP-derived Marker

  • Song, Eun-Sung;Kim, Song-Yi;Chae, Soo-Cheon;Kim, Jeong-Gu;Cho, Heejung;Kim, Seunghwan;Lee, Byoung-Moo
    • Research in Plant Disease
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • A PCR method has been developed for the pathovar-specific detection of Pseudomonas syringae pv. tagetis, which is the causal agent of bacterial leaf spots and apical chlorosis of several species within the Compositae family. One primer set, PSTF and PSTR, was designed using a genomic locus derived from an amplified fragment length polymorphism (AFLP) fragment produced a 554-bp amplicon from 4 isolates of P. syringae pv. tagetis. In DNA dot-blot analysis with the PCR product as probe, a positive signal was identified in only 4 isolates of P. syringae pv. tagetis. These results suggest that this PCR-based assay will be a useful method for the detection and identification of P. syringae pv. tagetis.

Genome Sequence and Comparative Genome Analysis of Pseudomonas syringae pv. syringae Type Strain ATCC 19310

  • Park, Yong-Soon;Jeong, Haeyoung;Sim, Young Mi;Yi, Hwe-Su;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.563-567
    • /
    • 2014
  • Pseudomonas syringae pv. syringae (Psy) is a major bacterial pathogen of many economically important plant species. Despite the severity of its impact, the genome sequence of the type strain has not been reported. Here, we present the draft genome sequence of Psy ATCC 19310. Comparative genomic analysis revealed that Psy ATCC 19310 is closely related to Psy B728a. However, only a few type III effectors, which are key virulence factors, are shared by the two strains, indicating the possibility of host-pathogen specificity and genome dynamics, even under the pathovar level.

Streptomycin Resistant Isolates of Pseudomonas syringae pv. actinidiae in Korea (국내에서 분리된 Pseudomonas syringae pv. actinidiae 균주들의 스트렙토마이신 저항성)

  • Lee, Young Sun;Kim, Gyoung Hee;Song, Yu-Rim;Oh, Chang-Sik;Koh, Young Jin;Jung, Jae Sung
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.44-47
    • /
    • 2020
  • Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker in kiwifruit, were found in Korea. A total of 734 isolates of P. syringae pv. actinidiae collected between 2008 and 2017 from bacterial canker infections in 111 kiwifruit orchards were assessed for streptomycin resistance. The survival of each isolate was screened against 100 ㎍/ml of streptomycin. Among 734 isolates, 38 streptomycin resistant P. syringae pv. actinidiae isolates originated from nine orchards were found. Streptomycin resistant isolates belonging to biovar 2 were found in several individual years, but ones belonging to biovar 3 were found in Korea only since 2016. Therefore, to use streptomycin for control of bacterial canker in kiwifruit orchards should be very careful, and it is necessary to check the streptomycin susceptibility of the pathogen before use in kiwifruit orchards.