• Title/Summary/Keyword: Pseudomonas sp. 미생물

Search Result 404, Processing Time 0.028 seconds

Production and Purification of Acetylcholinesterase Inhibitor from Pseudomonas sp960903 (Pseudomonase sp. 960903에 의한 acetylcholinesterase 억제제의 생산 및 정제)

  • 김경자
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.322-328
    • /
    • 2000
  • To screen agent for the treat-ment of Alzhimers Disease several strains of bacteria producing acetylcholinesterase inhibitor ware isolated from soil. Strain 960903 showed strong acetylcholinesteras inhibitory activity and low butyrylcholinesterse inhibitory activity. The strain 960903 was identified as Pseudomonas sp. Acetylcholinesterase inhibitor ws highly achieved in fermentation medium containing soluble starch 3.0%, glycerol 1.0%, pharmamedia 0.5%, KCI 0.3%, $CaCO_3$ 0.2%, MgS $O_4$..$7H_2$O 0.05%, $KH_2$$PO_4$ 0.05%(pH6.5) at $30^{\circ}C$ for 4 days. Acetylcholinesterase inhibitor was purified by Diaion WA-30($OH^{-}$) column charomatography and cellulose column chromatography. Acetylcholinesterase inhibi-tor showd the maximum wavelength at 205 nm and was soluble in water, acetic acid, ethanol, methanol and dime-thyl sulfoxide. The concentration of 50% inhibition($IC_{50}$) of inhibitor against acetylcholinesterase was 25$\mu\textrm{g}$/ml. The inhibitor was inactivated on heating ar $100^{\circ}C$ fro 15 min and more stable in acidic region than alkaline region.n.

  • PDF

Alcohol Dehydrogenase Active on Furfuryl Alcohol from Pseudomonas sp. (Part 1) Purification and Properties of Alcohol Dehydrogenase (Pseudomonas 속균이 생산하는 Alcohol Dehydrogenase에 관한 연구 (제1보) Alcohol Dehydrogenase 정제와 일반적성질)

  • ;Hirosake Okadar
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.1
    • /
    • pp.27-32
    • /
    • 1980
  • We isolated a strain of Pseudomonas sp. from soil to utilize furfuryl alcohol as a carton source by enrichment culture. Alcohol dehydrogenase from this bacteria was purified 700-fold by Sephadex G-200 and affinity column chromatography to be homogeneous by electrophoresis and analytical centrifugation. This enzyme had a molecular weight of 120,000 and was composed of four subunits consisting of 266 amino acid residues. The optimal pH of the enzyme was pH 8.5 to 9, and the optimal temperature was, 45$^{\circ}C$. This enzyme was stable at 55$^{\circ}C$, but lost 80% of its activity in 10min at 6$0^{\circ}C$.

  • PDF

Purification and Enzymatic Properties of Alkaline Lipase from the Pseudomonas sp.S4-14 (Pseudomonas sp. S4-14가 생산하는 Alkaline Lipase의 정제 및 효소학적 성질)

  • Park, Sang-Ho;Choi, Soo-Chul;Rhee, Joon-Shick;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.271-276
    • /
    • 1994
  • The strain S4-14 which produced alkaline lipase and had resistance against linear alkylbenzene sulfonate was isolated from soil or water samples. The isolated strain S4-14 was identified a species belong to Pseudomonas. Alkalin lipase secreted by Pseudomonas sp. S4-14 was purified by ammonium sulfate precipitation procedure follwed by DEAE-Cellulose, DEAE-Sepharose and gel filtration chromatohraphies with 995.15 U/mg protein and 16.1% yield. The molecular weight of the enzyme was estimated to be 65,000 dalton by SDS-PAGE. The optimum pH and temperature of the purified enzyme was 10.5 and 45$\circ $C, respectively. The emzyme was stable at 45$\circ $C for 1 hr and in a pH range from 8.0 to 12.0 for 24 hr at 4$\circ $C. The activity of lipase was enhanced by Ca$^{2+}$ while inhibited strongly by Pb$^{2+}$, Zn$^{2+}$ or Fe$^{3+}$. The activity of lipase was inactivated about 50~60% in the presence of 50 mg/l linear alkylbenzene sulfonate, $\alpha $-olefin sulfonate, alcohol ethoxylate or perborate.

  • PDF

Isolation and Characterization of Pseudomonas sp. P2 Degrading Polychlorinated Biphenyls (PCBs)

  • Kim, Jung Ho;Sang Ki Choi;Moon Ki Park;Young Ho Kim;Seung Kyo Suh;Cheol Joo Woo;Heui Dong park
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.167-172
    • /
    • 1996
  • The bacterial strain P2 degrading polychlorinated biphenyls (PCBs) was isolated from the soil around the Shinchun stream in Taegu after enrichment culture in a media containing biphenyl as the sole carbon source. The isolate was identified as a strain of Pseudomonas sp. based on its morphological and physiological characteristics. The optimal conditions of initial pH of media and temperature for growth were 7.0 and $30^{\circ}C$, respectively. Degradation of biphenyl and PCBs was confirmed by GC during the culture of Pseudomonas sp. P2 in a media containing them at a concentration of 500 mg/I. It was observed that Pseudomonas sp. P2 could degrade 97.0$%$ of biphenyl and 60.0$%$ of PCBs after 160 h culture.

  • PDF

Isolation and Characterization of Pseudomonas sp. KM10, a Cadmium- and Mercury-resistant, and Phenol-degrading Bacterium

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.388-398
    • /
    • 1998
  • A bacterium which is resistant to both mercury and cadmium, and also capable of utilizing phenol as a carbon and energy source, was isolated from the Kumho River sediments near Kangchang Bridge, Taegu, Korea. The isolate was labeled Pseudomonas sp. KM10 and characterized. The bacteria grew in 4 mM $CdCl_2$and in $70{\mu}M$ $HgCl_2$. The bacteria efficiently removed over 90% of 1 g/l phenol within 30 h. In the presence of 1.250 g/l phenol, the growth of the microorganism was slightly retarded and the microorganism could not tolerate 1.5 g/l phenol. Curing of plasmid from the bacteria was carried out to generate a plasmidless strain. Subsequent experiments localized the genes for phenol degradation in plasmid and the genes for mercury resistance and cadmium resistance on the chromosome. Dot hybridization and Southern hybridization under low stringent conditions were performed to identify the DNA homology. These results showed significant homologies between the some sequence of the chromosome of Pseudomonas sp. KM10 and merR of Shigella flexneri R 100, and between the some sequence of the chromosome of Pseudomonas sp. KM10 and cadA of Staphylococcus aureus pI258. The mechanism of cadmium resistance was efflux, similar to that of S. aureus pI258 cadA, and the mechanism of mercury resistance was volatilization, similar to that of S. flexneri R100 mer.

  • PDF

Isolation and Identification of Exo-xylanase Producing Microorganism (Exo-xylanase 생산균의 분리 및 동정)

  • 하재석;이영남;임재윤
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 1992
  • The xylanase producing microorganisms occurring on rotten woods were selectively isolated on the modified Czapek-Dox medium supplemented with 0.5% xylan as a sole carbon source. Among more than three-hundred isolates of xylanase producing microorganisms, only two bacterial isolates were turned out to be more potent xylanase producer than the reference strain of xylanase producer, Aureobaszdium pullulans NRRL Y-2311. The exo-xylanase producer, bacterial isolate No. 33 was identified as a strain of Pseudomonas sp. on the basis of morphological and biochemical characterizations as well as cellular fatty acid composition. Optima of pH and of temperature for enzyme reactions of xylanase were 5.5 and $50^{\circ}C$ respectively. The enzyme was stable in a range of pH 5.0~7.0 and below $45^{\circ}C$. Among the number of carbohydrate substrates, xylose was turned out to be a potent inducer of Pseudomonas sp. No.33 exo-xylanase. Among the raw materials tested, rice straw was the best material for xylanase production by Pseudomonas sp. strain No. 33.

  • PDF

Identification of Auxin from Pseudomonas sp. P7014 for the Rapid Growth of Pleurotus eryngii Mycelium (큰느타리버섯 균사체의 생육촉진을 위한 Pseudomonas sp. P7014으로부터 옥신 확인)

  • Kang, Young Min;Cho, Kye Man
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.15-21
    • /
    • 2014
  • The promoting effect of Pseudomonas sp. P7014 on the mycelia growth of Pleurotus eryngii was investigated. An ethyl acetate fraction (F5) from the culture supernatant of the bacteria was confirmed to contain the growth promoting compound (GPC). The GPC was identified to be indole acetic acid (IAA) by TLC, HPLC, MS/MS, and NMR analyses. P. eryngii mycelia grew rapidly both on PDA and in PDB after the treatment of GPC. The promoting concentration of GPC was as low as 1.0 nM. Tryptophan, the aminated form of IAA, was confirmed to be the precursor of IAA. These results suggested that bacterial secreted compound was IAA and plays an important role in promoting growth of mushroom mycelia.

Production of Biosurfactant by Pseudomonas sp. SW1 for Microbial Remediation of Oil Pollution (유류오염방제를 위한 Pseudomonas sp. SW1로부터 생물계면활성제의 생산)

  • Son, Hong-Joo;Suk, Wan-Su;Lee, Geon;Lee, Sang-Joon
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.193-198
    • /
    • 1997
  • Microorganisms capable of producing biosurfactant were isolated from oil-contaminated soils and seawater. Among them, the selected strain SW1 was identified as Pseudomonas sp. by taxonomical characteristic tests, and so tentatively named Pseudomonas sp. SWI. The optimal temperature and initial pH for biosurfactant production were TEX>30^{\circ}C.$ and 7.0, respectively. The optimal medium composilion for the production of biosurfactant by Pseudomonas sp. SW1 were hexadecane of 2.0%, yeast extract of 0.04%, $K_{2}HPO_4$ of 0.02%, $KH_2PO_4$ of 0.03% and $MgSO_4$ center dot $7H_2O$ of 0.04%, respectively. Under the above conditions, minimum wrface tension was 32 mN/m after incubation of 2 days. The biosurfactant was produced during initial stationary phase in the optimal medium. Pseudotnonas sp. SWl utilized various hydrocarbons such as Bunker oils, n-alkanes and branched alkanes as a sole carbon source.

  • PDF

Sequence Characteristics of xylJQK Genes Responsible for Catechol Degradation in Benzoate-Catabolizing Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Jun-Hun;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.700-705
    • /
    • 2003
  • Pseudomonas sp. S-47 is capable of degrading benzoate and 4-chlorobenzoate as well as catechol and 4-chlorocatechol via the meta-cleavage pathway. The three enzymes of 2-oxopenta-4-enoate hydratase (OEH), acetaldehyde dehydrogenase (acylating) (ADA), and 2-oxo-4-hydroxypentonate aldolase (HOA) encoded by xylJQK genes are responsible for the three steps after the meta-cleavage of catechol. The nucleotide sequence of the xylJQK genes located in the chromosomal DNA was cloned and analyzed. GC content of xylJ, xylQ, and xylK was 65% and consisted of 786, 924, and 1,041 nucleotides, respectively. The deduced amino acid sequences of xylJ, xylQ, and xylK genes from Pseudomonas sp. S-47 showed 93%, 99%, and 99% identity, compared with those of nahT, nahH, and nahI in Pseudomonas stutzeri An10. However, there were only about 53% to 85% identity with xylJQK of Pseudomonas putida mt-2, dmpEFG of P. putida CF600, aphEFG of Comamonas testosteroni TA441, and ipbEGF of P. putida RE204. On the other hand, the xylLTEGF genes located upstream of xylJQK in the strain S-47 showed high homology with those of TOL plasmid from Pseudomonas putida mt-2. These findings suggested that the xylLTEGFIJQK of Pseudomonas sp. S-47 responsible for complete degradation of benzoate and then catechol via the meta-pathway were phylogenetically recombinated from the genes of Pseudomonas putida mt-2 and Pseudomonas stutzeri An10.

PAHs Degrading Bacterium Separation and Identification for Biological Treatment (PAHs의 생물학적 처리를 위한 분해 미생물 분리 동정)

  • Kim, Man;Choi, Kyoung-Kyoon;Go, Myong-Jin;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2007
  • Pseudomonas sp. KM1 was separated from soil contaminated by petroleum and identified. The isolated strain is Gram-positive, rod-shaped and immotile. In batch culture, the optimum cultivation temperature and pH was $35^{\circ}C$ and 7, respectively. Biodegradation of PAHs experiment with soil slurry system was performed using Pseudomonas sp. KM1. Pseudomonas sp. KM1 could degrade 7 PAHs including naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, pyrene, and fluoranthene. These mixed PAHs was easily degraded within one day except fluoranthene, which was degraded much slowly, taking several days by this isolated bacteria. Pseudomonas sp. KM1 is good candidate for bioremediation of PAHs contaminated soils. Biodegradation rates of naphthalene, phenanthrene and pyrene in soils were different at each soil, and the rates were decreased as sorption capacity increased.