• Title/Summary/Keyword: Pseudomonas putida Z101

Search Result 3, Processing Time 0.02 seconds

Isolation of Pseudomonas putida Z104 and Degra-dation Characteristics of Benzoate and Catechol (Benzoate와 Catechol을 분해하는 Pseudomonas putida Z104의 분리 및 분해특성)

  • 김기필;김준호;김민옥;박정아;정원화;김치경
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.307-313
    • /
    • 2000
  • Aromatic hydrocarbons are known to be recalcitrant, so that they have been concerned as pollutant chemicals. Microorganisms play a major role in the breakdown and mineralization of these compounds. However, the kinetics of the biodegradation process may be much slower than desired from environmental consideration. The biodegradation of aromatic hydrocarbons is conducted by oxidation to produce catechol as a common intermediate which is metabolized for carbon and energy sources. In this study, a bacterial isolate capable of degrading several aromatic hydrocarbons was isolated from the contaminated wastewater of Yeocheon industrial complex. On the basis of biochemical characteristics and major cellular fatty acids, the isolate was identified as Pseudomonas putida Z104. The strain Z104 can utilize benzoate and catechol as the sole carbon and energy sources via a serial degradative pathway. The strain degraded actively 0.5 mM catechol in MM2 medium at pH 7.0 and 3$0^{\circ}C$.

  • PDF

Study on the construction of a starvation promoter vector system derived from Pseudomonas putida (Pseudomonas putida 에서 분리된 starvation promoter를 이용한 vector의 개발 및 응용에 관한 연구)

  • Kim, Young-Jun;Kim, Dae-Sun;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2003
  • Starvation promoters can be utilized for in situ bioremediation and for the efficient bioprocessing. Previously we have cloned and characterized strong starvation promoters from envrionmentally relevant bacteria, Pseudomonas putida strains (Y. Kim, and A. Matin, J. Bacteriol. 177:1850-1859, 1995). Here we report the construction of the plasmid pYKS101 using one of the starvation promoters from P. putida MK1. The pYKS101 was found to be useful for a novel starvation promoter-driven gene expression system. Under this system, the target reporter gene, lacZ, was stably integrated into the chromosomal DNA of P. putida MK1. ${\beta}$-galactosidase activity was found to be four-fold higher upon carbon starvation than during exponential growth. The resultant recombinant strain is indigenous to the environment contaminated with various toxic materials, hence can be a good candidate for in situ bioremediation.

  • PDF

Efficient Expression of a Carbon Starvation Promoter Activity Under Nutrient-Limited Chemostat Culture

  • KIM DAE-SUN;PARK YONG-IL;LEE HYANG BURM;KIM YOUNGJUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.678-682
    • /
    • 2005
  • The promoter region of a carbon starvation gene isolated from Pseudomonas putida was cloned and analyzed for its potential use for in situ bioremediation and bioprocessing. We constructed a recombinant plasmid pMKD101 by cloning the 0.65 kb promoter region of the gene into the promoter proving vector, pMK301, which contains the lacZ for ${\beta}$-galactosidase activity as a reporter gene. pMKD101 was transformed into the wild-type P. putida MK1, resulting in P. putida RPD101, and analyzed for ${\beta}$-galactosidase activity under different culture conditions. When RPD101 was grown on the minimal medium plus $0.1\%$ glucose as a sole carbon source in batch cultures, ${\beta}$-galactosidase activity was found to be 3.2-fold higher during the stationary phase than during the exponential phase. In chemostat cultures, ${\beta}$-galactosidase activity was found to be 3.1-fold higher at the minimal growth rate (dilution rate=$0.05\;h^{-1}$) than at the maximal growth rate (dilution rate=$0.173;h^{-1}$). The results suggest that a carbon starvation promoter can be utilized to maximize the expression of a desired gene under nutrient limitation.