• Title/Summary/Keyword: Pseudo second order model

Search Result 303, Processing Time 0.03 seconds

A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase (석탄광산배수슬러지를 이용한 액상상태의 비소제거 흡착특성 및 반응속도에 관한 연구)

  • Lee, Se-Ban;Cui, Ming-Can;Jang, Min;Moon, Deok-Hyun;Cho, Yun-Chul;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.241-249
    • /
    • 2011
  • In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).

Removal Characteristics of Sr and Cu Ions using PS-FZ Beads fabricated by Immobilization of Zeolite prepared from Coal Fly Ash from an Ulsan Industrial Complex with Polysulfone (울산산업공단에서 배출되는 coal fly ash로 합성한 제올라이트를 폴리슬폰으로 고정화하여 제조한 PS-FZ 비드의 Sr 및 Cu 제거 특성)

  • Kam, Sang-Kyu;Lee, Chang-Han;Jeong, Kap-Seop;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1623-1632
    • /
    • 2016
  • Zeolite (FZ) prepared using coal fly ash from an Ulsan industrial complex was immobilized with polysulfone (PS) to fabricate PS-FZ beads. The prepared PS-FZ beads were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The optimum ratio for preparing PS-FZ beads was 1 g of PS to 2 g of FZ. The removal efficiencies of Sr and Cu ions by the PS-FZ beads increased as the solution pH increased and nearly reached a plateau at pH 4. A pseudo-second-order model morel fit the adsorption kinetics of both ions by the PS-FZ beads better than a pseudo-first-order model. The Langmuir isotherm model fit the equilibrium data well. The maximum adsorption capacities calculated from the Langmuir isotherm model were 46.73 mg/g and 62.54 mg/g for the Sr and Cu ions, respectively. Additionally, the values of thermodynamic parameters such as free energy (${\Delta}G^{\circ}$), enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$) were determined. The results implied that the prepared PS-FZ beads could be interesting an alternative material for Sr and Cu ion removal.

Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies

  • Zhang, Yu;Tang, Qiang;Chen, Su;Gu, Fan;Li, Zhenze
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.95-104
    • /
    • 2018
  • Copper pollution around the world has caused serious public health problems recently. The heavy metal adsorption on traditional membranes from wastewater is limited by material properties. Different adsorptive materials are embedded in the membrane matrix and act as the adsorbent for the heavy metal. The carbonized leaf powder has been proven as an effective adsorbent material in removing aqueous Cu(II) because of its relative high specific surface area and inherent beneficial groups such as amine, carboxyl and phosphate after carbonization process. Factors affecting the adsorption of Cu(II) include: adsorbent dosage, initial Cu(II) concentration, solution pH, temperature and duration. The kinetics data fit well with the pseudo-first order kinetics and the pseudo-second order kinetics model. The thermodynamic behavior reveals the endothermic and spontaneous nature of the adsorption. The adsorption isotherm curve fits Sips model well, and the adsorption capacity was determined at 61.77 mg/g. Based on D-R model, the adsorption was predominated by the form of physical adsorption under lower temperatures, while the increased temperature motivated the form of chemical adsorption such as ion-exchange reaction. According to the analysis towards the mechanism, the chemical adsorption process occurs mainly among amine, carbonate, phosphate and copper ions or other surface adsorption. This hypothesis is confirmed by FT-IR test and XRD spectra as well as the predicted parameters calculated based on D-R model.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

Comparative Evaluation of Methylene Blue and Humic Acids Removal Efficiency Using Rice Husk Derived Biochars and Powdered Activated Carbon (쌀겨 바이오차와 분말 활성탄을 이용한 메틸렌 블루와 휴믹산 제거 효율 비교)

  • Lee, Juwon;Jeong, Eunju;Lee, Jungmin;Lee, Yong-Gu;Chon, Kangmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.483-492
    • /
    • 2021
  • This study evaluated the removal efficiencies of methylene blue (MB) and humic acids (HA) using a rice husk (RH) biochar and powdered activated carbon (PAC). The pseudo-second-order model better presented the adsorption of MB and HA onto a RH biochar than the pseudo-first-order model. Furthermore, better description of the adsorption behavior of MB and HA by the Langmuir isotherm model (R2 of the RH biochar: MB = 0.986 and HA = 0.984; R2 of PAC: MB = 0.997 and HA = 0.989) than the Freundlich isotherm model (R2 of the RH biochar: MB = 0.955 and HA = 0.965; R2 of PAC: MB = 0.982 and HA = 0.973) supports the assumption that monolayer adsorption played key roles in the removal of MB and HA using the RH biochar and PAC. Batch experiments were performed on the effects of dosage, temperature, and pH. For all experiments, PAC showed higher efficiencies than RH biochar and MB adsorption efficiencies were higher than those of HA. Adsorption efficiencies increased with increasing amounts of adsorbents and temperature. As the pH increased, adsorption efficiencies of MB were increased while adsorption efficiencies of HA were decreased.

Sorption Characteristics of Procymidone and 3,5-Dichloroaniline on Microplastic Films (미세플라스틱 필름의 프로시미돈과 3,5-다이클로로아닐린 흡착 특성)

  • Ji Won Yang;Youn-Jun Lee;Eun Hea Jho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.184-192
    • /
    • 2023
  • Microplastics are generated by the breakdown of plastic wastes in agricultural soil and residual pesticides in agricultural soil can adsorb on microplastics. In this study, the sorption characteristics of procymidone (PCM) and one of its metabolites, 3,5-dichloroaniline (DCA), on low-density polyethylene (LDPE) and polyvinyl chloride (PVC) microplastics were investigated. The sorption and desorption tests were carried out for 72 h using LDPE or PVC microplastic films to study the sorption isotherms of PCM and DCA and kinetics for sorption and desorption of PCM. The results show that the sorption data of PCM and DCA were better described by the Freundlich isotherm model (R2=0.7568-0.9915) than the Langmuir isotherm model (R2=0.0545-0.5889). The sorption potential of PVC for both PCM and DCA was greater than that of LDPE. The sorption data of PCM on PVC and LDPE were fitted better to the pseudo-second-order kinetic model than the pseudo-first-order kinetic model. The PCM sorption on LDPE was about three times faster than that on PVC. Both microplastic films released the sorbed PCM back to water, and more PCM was released from PVC than LDPE, but the desorption rate was faster with LDPE than PVC. Overall, the results show that different microplastics have different sorption characteristics for different chemicals. Also, the sorbed chemicals can be released back to environment suggesting the potential of contaminant spread by microplastics. Thus, the management practices of microplastics in agricultural soil need to consider their interaction with the chemical contaminants in soil.

Adsorption Characteristics of Sr(II) and Cs(I) ions by Zeolite Synthesized from Coal Fly Ash (Coal Fly Ash로 합성한 제올라이트에 의한 Sr(II)과 Cs(I) 이온의 제거 특성)

  • Lee, Chang-Han;Park, Jeong-Min;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.1987-1998
    • /
    • 2014
  • Zeolite was synthesized from power station waste, coal fly ash, as an alternative low-cost adsorbent and investigated for the removal of Sr(II) and Cs(I) ions from single- and binary metal aqueous solutions. In order to investigate the adsorption characteristics, the effects of various operating parameters such as initial concentration of metal ions, contact time, and pH of the solutions were studied in a batch adsorption technique. The Langmuir model better fitted the adsorption isotherm data than the Freundlich model. The pseudo second-order model was found more applicable to describe the kinetics of system. The adsorption capacities of Sr(II) and Cs(I) ions obtained from the Langmuir model were 1.7848 mmol/g and 0.7640 mmol/g, respectively. Although the adsorption capacities of individual Sr(II) and Cs(I) ions was less in the binary-system, the sum of the total adsorption capacity (2.3572 mmol/g) of both ions in the binary-system was higher than the adsorption capacity of individual ion in the single-system. Comparing the homogeneous film diffusion model with the homogeneous particle diffusion model, the adsorption was mainly controlled by the particle diffusion process.

Study on Adsorption Kinetic Characteristics of Propineb Pesticide on Activated Carbon (활성탄에 대한 프로피네브 농약의 흡착동력학적 특성 연구)

  • Lee, Jong-Jib;Cho, Jung-Ho;Kim, Heung-Tae
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.346-352
    • /
    • 2011
  • The adsorption characteristics of propineb pesticide onto activated carbon has been investigated for the adsorption in aqueous solution with respect to initial concentration, contact time and temperature in batch experiment. The Langmuir and Freundlich adsorption models were applied to described the equilibrium isotherms and isotherm constants were also determined. The Freundlich model agrees with experimental data well. slope of isotherm line indicate that activated carbon could be employed as effective treatment for removal of propineb. The pseudo first order, pseudo second order kinetic models were use to describe the kinetic data and rate constants were evaluated. The adsorption process followed a pseudo second order model, and the adsorption rate constant($k_2$) decreased with increasing initial concentration of propineb. The activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The estimated values for change of free energy were -7.28, -8.27 and -11.66 kJ/mol over activated carbon at 298, 308 and 318 K, respectively. The results indicated toward a spontaneous process. The positive value for change of enthalpy, 54.46 kJ/mol, found that the adsorption of propineb on activated carbon is an endothermic process.

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.

Adsorption and electro-Fenton processes over FeZSM-5 nano-zeolite for tetracycline removal from wastewater

  • Niaei, Hadi Adel;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.173-181
    • /
    • 2020
  • Adsorption and heterogeneous electro-Fenton process using iron-loaded ZSM-5 nano-zeolite were investigated for the removal of Tetracycline (TC) from wastewater. The nano-zeolite was synthesized hydrothermally and modified through impregnation. The zeolite was characterized by XRD, FT-IR, FE-SEM, N2 adsorption-desorption, and NH3-TPD techniques. The equilibrium data were best represented by the Freundlich isotherm. The pseudo-second-order kinetic model was the most accurate model for the adsorption of TC on the modified nano-zeolite. The effect of parameters such as pH of solution and current density were investigated for the heterogeneous electro-Fenton process. The results showed that the current density of 150 mA and pH of 3 led to the highest TC removal (90.35%) at 50 min. The nano-zeolite showed the appropriate reusability. Furthermore, the developed kinetic model was in good agreement with the removal data of TC through the electro-Fenton process.