• Title/Summary/Keyword: Prunus mume extract(PME)

Search Result 6, Processing Time 0.025 seconds

Antimicrobial activity of Prunus mume extract to oral microbes (매실추출물(PME)의 구강 미생물에 대한 항균작용)

  • Jang, Jong-Hwa;Kim, Young-In;Lee, Hyun
    • Journal of Korean society of Dental Hygiene
    • /
    • v.14 no.1
    • /
    • pp.109-115
    • /
    • 2014
  • Objectives : Prunus mume has been used for the folk medicine from old times. The purpose of the study was to investigate the antimicrobial activity of prunus mume extract to various oral microbes. Methods : This study was carried out to examine the antimicrobial effect of Prunus mume extract against oral microbes. Data were collected using a Dentocult SM Strip mutans and Dentocult LB Strip mutans from April 5 to May 4, 2013. A total of 36 experimental and 32 control group were selected for this study. Results : The MIC of Prunus mume extract was tested for 0.39% in S. mutans, S. salivarius and S. auerus, 0.78% in S. mitis, S. equi and E. coli. In vivo, experimental group showed significantly the lower Streptococcus mutans levels by the use of the gum contained Prunus mume extract from 15 days compared with control group(p=0.012). The reduction was more significant in Lactobacilli level of the experimental group than the control group(p=0.022). Conclusions : These findings suggest that the oral products containing Prunus mume extracts is effective in preventing oral diseases.

Effect of Prunus mume extract(PME)-containing chewing gum mastication on the change of saliva ingredients

  • Jang, Jong-Hwa;Lee, Young-Soo
    • Journal of Korean society of Dental Hygiene
    • /
    • v.16 no.3
    • /
    • pp.463-469
    • /
    • 2016
  • Objectives: The purpose of the study is to investigate the effect of chewing gum containing Prunus mume extract(PME) on the change of saliva ingredients. On the basis of the biological background of molecules and diagnostic indices in the use of saliva, the mastication effect of chewing gum containing PME was demonstrated in terms of secretory IgA concentration and total protein concentration in stimulated saliva. Methods: This study is an experimental research on the use of a research design before and after applying a randomized control group. Participants were distributed randomly to the experimental group and the control group, respectively. The experiment group was instructed to masticate the chewing gum containing PME for 10 minutes for one month after each meal within 30 minutes. Salivary secretion was collected by the participants between 8 and 10 a.m in the morning in the research office. For the measurement of secretory IgA and total protein concentrations in the saliva, indirect enzyme-linked immunosorbent assay(ELISA) was used. Results: The salivation stimulation rate was significantly increased after four weeks of masticating chewing gum containing PME after each meal(p<0.001). Mastication of chewing gum containing PME for four weeks decreased the concentration of secretory IgA much more significantly than that after mastication for one week(p=0.003). The concentration of total protein in the saliva was decreased after four weeks in the experimental and control groups. Conclusions: Mastication of chewing gum containing PME stimulated salivary secretion and led to oral disease prevention in patients with xerostomia. Furthermore, it seems to be urgent to seek measures that can be utilized in intervention for patients with xerostomia.

Cytoprotective Effect of Ethanol Extract from Maesil (Prunus mume Sieb. et Zucc.) on Alloxan-induced Oxidative Damage in Pancreatic-cell, HIT-T15 (Alloxan에 의한 HIT-T15 세포의 산화적 손상에 대한 매실(Prunus mume Sieb. et Zucc.) 주정추출물의 세포보호효과)

  • Kim, In-Hye;Kim, Jong-Bae;Cho, Kang-Jin;Kim, Jae-Hyun;Om, Ae-Son
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.184-192
    • /
    • 2012
  • The present study was designed to examine the potential antidiabetic and antioxidant effect of ethanol extract from $Prunus$ $mume$ fruit (PME) against alloxan-induced oxidative stress in pancreatic ${\beta}$-cells, HIT-T15. To evaluate the antidiabetic effect of PME, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliu bromide (MTT) cell proliferation assay, lactate dehydrogenase (LDH) release assay, $NAD^+$/NADH ratio and insulin secretion were assessed. We also measured its antioxidant effect against alloxan-induced oxidative stress in the cells by assessing the levels of the antioxidant enzymes including superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). The results of this analysis showed that alloxan significantly decreased cell viability, increased LDH leakage, and lowered $NAD^+$ /NADH ratio and insulin secretion in HIT-T15 cells. However, PME significantly increased the viability of alloxan-treated cells and lowered LDH leakage. The intracellular $NAD^+$ /NADH ratio and insulin secretion were also increased by 1.5~1.9-fold and 1.4-fold, respectively, after treatment with the PME. The HIT-T15 cells treated with alloxan showed significant decreases in the activities of antioxidant enzymes, while PME significantly elevated the levels of antioxidant enzymes. Based on these results, we suggest that PME could have a protective effect against the cytotoxicity and dysfunction of pancreatic ${\beta}$-cells in the presence of alloxan-induced oxidative stress.

Effects of Ethanol Extract of Prunus mume on the Antioxidative System and Lipid Peroxidation on Ethanol-Induced Hepatotoxicity in Rat Liver (매실 추출물이 알코올 투여 흰쥐의 항산화계 및 지질과산화에 미치는 영향)

  • 이정현;나명순;이명렬
    • Food Science and Preservation
    • /
    • v.11 no.1
    • /
    • pp.71-78
    • /
    • 2004
  • To investigate the antioxidative effects of Prunus mume ethanol extract on the ethanol-induced hepatotoxicity in rat liver, Sprague-Dawley rats weighing 120∼160 g were divided into 5 groups; normal group(NOR), Prunus mume ethanol extract 200mg/kg treated group(PME), ethanol(10 mL/kg, 35%) treated group(ETH), Prunus mume ethanol extract 200 mg/kg and ethanol treated group (PML) and Prunus mume ethanol extract 400 mg/kg, and ethanol treated group(PMF), respectively. The antioxidative activity in vitro was reduced in order of EtOAC>n-hexane>water> chloroform fraction. The growth rate and feed efficiency ratio decreased by ethanol administration were gradually increased to the adjacent level of NOR by administering Prunus mume ethanol extract. It was observed that activities of catalase, superoxide dismutase(SOD), xanthine oxidase and glutathione peroxidase(GSH-Px) of liver and alanine aminotransferase(ALT) and asparate aminotransferase(AST) of serum were elevated by ethanol administration. Besides, Prunus mume ethanol extract markedly decreased elevated activites of catalase, GSH-Px, ALT and AST, except in activites of SOD and xanthine oxidase compared to ETH. Also, the depleted content of GSH by ethanol was increased similar to NOR level by administering Prunus mume ethanol extract. These results suggested that Prunus mume ethanol extract has a possible protective effect on the ethanol-induced hepatotoxicity in rat liver.

Organic Acids and Volatile Compounds Isolated from Prunus mume Extract (매실추출물로부터 분리된 유기산과 휘발성분)

  • Ha Myung-Hee;Park Woo-Po;Lee Seung-Cheol;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.12 no.3
    • /
    • pp.195-198
    • /
    • 2005
  • Among organic acids, Prunus mume extract(PME) was mostly consisted of $0.47\;mg\%$ citric, $0.43\;mg\%$ malic and $0.25\;mg\%$ oxalic acid Volatile compounds in PME were identified by GC/MSD, showing that acetic acid($8.3\%$) and p-coumaric acid($13.1\%$) as well as 5-hydroxymethyl furfural($32.3\%$), furfural($8.3\%$), and 3-methyl-2,3-furandione($2.3\%$) were major compounds which are known as antimicrobial substances.

Effect of Prunus mume Extract on Shelf-life of Fermented Dairy Product (매실추출물이 발효유제품의 Shelf-life에 미치는 영향)

  • Choi Sung-Gil;Oh Byung-Tae;Park Woo-Po;Lee Seung-Cheol;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.304-309
    • /
    • 2006
  • In order to examine the antimicrobial effect on dairy processing facilities and products, Prunus mume extinct (PME) was applied to the pilot plant system of dairy industry and yogurt, PME showed thermal and pH stability in the wide spectrum of temperature ($40{\sim}150^{\circ}C$) and pH ($4{\sim}10$) and remarkable antimicrobial activities against dairy spoilage microorganisms. As the result of aseptic treatment of dairy processing facilities with PME microbial colony including coliform bacteria was not detected canpore to those detected in the control. In the level of PME concentration which inhibit the growth of putrefactive microorganisms we could produce yogurt with good scores of sensory evaluation.