• Title/Summary/Keyword: Proton transfer reaction

Search Result 79, Processing Time 0.03 seconds

Kinetics and Mechanism of Michael-type Reactions of Ethyl Propiolate with Alicyclic Secondary Amines in H2O and MeCN: Solvent Effect on Reactivity and Transition-State Structure

  • Kim, Song-I;Baek, Hye-Won;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2909-2912
    • /
    • 2009
  • The amines studied in this study are less reactive toward ethyl propiolate (3) in MeCN than in H$_2$O although they are 7 to 9 pK$_a$ units more basic in the aprotic solvent. The reactivity of morpholine and deuterated morpholine toward 3 is found to be identical, indicating that proton transfer occurs after rate-determining step (RDS). The fact that kinetic isotope effect is absent excludes a stepwise mechanism in which proton transfer occurs in RDS as well as a concerted mechanism in which nucleophilic attack and proton transfer occur concertedly through a 4-membered cyclic transition state (TS). Thus, the reactions have been concluded to proceed through a stepwise mechanism in which proton transfer occurs after RDS. Brønsted-type plots are linear with small ${\beta}_{nuc}$ values, i.e., ${\beta}_{nuc}$ = 0.29 in H$_2$O and ${\beta}_{nuc}$ = 0.51 in MeCN, indicating that bond formation is not advanced significantly in RDS. The small ${\beta}_{nuc}$ value also supports the conclusion drawn from the study of kinetic isotope effect.

Theoretical Studies of Hydrogen Bond Interactions in Fluoroacetic Acid Dimer

  • Chermahini, Alireza Najafi;Mahdavian, Mohsen;Teimouri, Abbas
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.941-948
    • /
    • 2010
  • Ab initio and density functional theory methods have been employed to study all theoretically possible conformers of fluoroacetic acid. Molecular geometries and energetic of cis and trans monomers and cis dimers in gaseous phase have been obtained using HF, B3LYP and MP2 levels of theory, implementing 6-311++G(d,p) basis set. It was found that cis rotamers are more stable. In addition, it was found that in comparison with acetic acid the strength of hydrogen bonding in fluoroacetic acid decreased. The infrared spectrum frequencies and the vibrational frequency shifts are reported. Natural population and atom in molecule analysis performed to predict electrostatic interactions in the cyclic H-bonded complexes and charges. The proton transfer reaction is studied and activation energy is compared with acetic acid proton transfer reaction.

Study of Frozen Molecular Surfaces by $Cs^{+}$ Reactive ion Scattering and tow-Energy Secondary ton Mass Spectrometry

  • Park, S.-C.;Kang, H.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 2002
  • We show that a combined technique of Cs$^{+}$ reactive ion scattering (Cs$^{+}$ RIS) and low-energy secondary ion mass spectrometry (LESIMS) provides a powerful means for probing molecular films and their surface reactions. Simple molecules, including HCI, NH$_3$, D$_2$O, and their mixtures, were deposited into a thin film of several monolayer thickness on Ru(001) at low temperature in vacuum, and the surface was characterized by Cs$^{+}$ RIS and LESIMS. On pure films, D$_2$O, HCI, and NH$_3$ existed in the corresponding molecular states. When HCI and NH$_3$ were co-deposited, ammonium ion(NH$_4$$^{+}$) was readily formed by proton transfer from HCI to NH$_3$. In the presence of water molecules, HCI ionized first to hydronium ion(H$_3$O$^{+}$), which subsequently transferred proton to NH$_3$ to form NH$_4$$^{+}$. The proton transfer, however, did not occur to a completion on ice, in contrast to the complete reaction in aqueous solutions.s solutions.

  • PDF

Photoionization of N,N,N',N'-Tetramethyl-p-phenylenediamine in Polar Solvents

  • Min Yeong Lee;Du Jeon Jang;Minyung Lee;Du-Jeon Jang;Dongho Kim;Sun Sook Lee;Bong Hyun Boo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.4
    • /
    • pp.429-433
    • /
    • 1991
  • The photoinduced electron transfer reactions of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in various polar solvents were studied by measuring time-resolved fluorescence. The temperature dependence on the fluorescence decay rate in acetonitrile, methanol, ethanol and buthanol was carried out to obtain the activation energy and Arrehnius factor for the photoinduced electron transfer reaction. It was found that as the dielectric constant of the solvent increases, the activation energy and the reaction rate increase. This implys that the Arrehnius factor is important in controlling the photoinduced electron transfer reaction rate. In water, TMPD exists in three forms (cationic, protonated and neutral forms) due to the high dielectric constant and strong proton donating power of water. The photoinduced electron transfer reaction was found to be very fast (< 50 ps) and also the long liverd component in the fluorescence decay profile attributable to the photoexcited protonated form of TMPD was observed. Probably, the reaction pathway and the reaction coordinate seem to be different depending on the solvents studied here.

Preparation and Characterization of Proton Conducting Membranes by Blending PVC-g-PHEA and PVA

  • Koh, Jong-Kwan;Choi, Jin-Kyu;Seo, Jin-Ah;Zeng, Xiaolei;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • This work reports the preparation of proton conductive crosslinked polymer electrolyte membranes by blending poly(vinyl chloride)-g-poly(hydroxyl ethyl acrylate) (PVC-g-PHEA) and poly(vinyl alcohol) (PVA). The PHEA chains of the graft copolymer were crosslinked with PVA using sulfosuccinic acid (SA) via the esterification reaction between -OH of polymer matrix and -COOH of SA. The PVC-g-PHEA graft copolymer was synthesized via atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC backbones. Ion exchange capacity (IEC) continuously increased with increasing concentrations of SA, due to the increasing portion of charged groups in the membrane. However, the water uptake increased up to 20.0 wt% of SA concentration above which it decreased monotonically. The membrane exhibited a maximum proton conductivity of 0.026 S/cm at 20.0 wt% of SA concentration, which is presumably due to competitive effect between the increase of ionic sites and the crosslinking reaction.

Synthesis of Dienamides via the Reaction of Nitrile with Allylindium Reagents and Intramolecular Acyl Group Quenching Cascade

  • Kim, Sung-Hwan;Kim, Yu-Mi;Kim, Jae-Nyoung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2351-2356
    • /
    • 2010
  • Various dienamide derivatives were synthesized in reasonable yields from benzonitriles having an amide moiety at the ortho-position, via the sequential (i) In-mediated allylation of nitrile moiety to form an imine intermediate, (ii) intramolecular quenching of an acyl group by the imine intermediate, and (iii) a proton transfer to dienamide.

Kinetics of the Oxidation of Substituted Benzyl Alcohols with 4-(Dimethylamino)pyridinium Dichromate (4-(Dimethylamino)pyridinium Dichromate를 이용한 치환 벤질 알코올류의 산화반응 속도)

  • Choi, Sun do;Park, Young Cho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.153-157
    • /
    • 2005
  • 4-(Dimethylamino)pyridinium dichromate was synthesized by the reaction of 4-(dimethylamino)pyridine with chromium(VI)trioxide in $H_2O$, and characterized by IR, EA and ICP. The oxidation of benzyl alcohol using 4-(dimethylamino)pyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant, in the order: cyclohexen < chloroform < acetone < N,N-dimethylformamide. In the presence of hydrochloric acid(HCl), 4-(dimethylamino)pyridinium dichromate oxidized benzyl alcohol and its derivatives ($p-CH_3$, H, m-Br, $m-NO_2$) smoothly in N,N-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron-withdrawing groups retarded the reaction. The Hammett reaction constant($\rho$) was -0.70 at 303K. The observed experimental data have been rationalized as follows: the proton transfer occurs after the prior formation of a chromate ester in the rate-determining step.

Kinetics and Mechanism of the Oxidation of Substituted Benzyl Alcohols by Cr(VI)-4,4'-Bipyridine Complex (크롬(VI)-4,4'-Bipyridine 착물에 의한 치환 벤질 알코올류의 산화반응 속도론과 메카니즘)

  • Kim, Young-Sik;Park, Young-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.462-469
    • /
    • 2012
  • Cr(VI)-4,4'-bipyridine complex(4,4'-bipyridinium dichromate) was synthesized by the reaction of 4,4'-bipyridine with chromium trioxide in H2O, and characterized by IR, ICP. The oxidation of benzyl alcohol using 4,4'-bipyridinium dichromate in various solvents showed that the reactivity increased with the increase of the dielectric constant(${\varepsilon}$), in the order: cyclohexene$CH_3$, H, m-Br, m-$NO_2$) smoothly in N,N'-dimethylformamide. Electron-donating substituents accelerated the reaction, whereas electron acceptor groups retarded the reaction. The Hammett reaction constant(${\rho}$) was -0.63(303K). The observed experimental data have been rationalized as follows; the proton transfer occurs after the prior formation of a chromate ester in the rate determining step.

Characteristics of the Intermediates in the Cyclization Reactions of Heterocycle-fused[1,4]oxazine Derivatives: Stepwise versus Concerted

  • Shin, Dong-Soo;Park, Jong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2219-2225
    • /
    • 2007
  • The reaction mechanisms for the cyclizations of N-methyl-2-(2-chloropyridin-3-yloxy)acetamide to 1-methylpyrido[ 3,2-b][1,4]oxazin-2-one and 1-methyl-pyrido[2,3-b][1,4]oxazin-2-one were investigated using ab initio Hartree-Fock, second-order Moller-Plesset perturbation, single point coupled cluster with both single and double substitution, and density functional theory methods. The 5-membered spiro intermediate (2) is optimized from the cyclization of the acyclic reactants through the proton-transfer reaction, and this intermediate proceeds continuously to the 6-membered intermediate through either a stepwise or a concerted reaction. In the stepwise reaction, an N-bridge-type intermediate as a stable structure is optimized, whereas, in the concerted reaction, the O-bridge-type intermediate is not optimized.