DOI QR코드

DOI QR Code

Photoionization of N,N,N',N'-Tetramethyl-p-phenylenediamine in Polar Solvents

  • Min Yeong Lee ;
  • Du Jeon Jang ;
  • Minyung Lee (Spectroscopy and Color Laboratory, Korea Standards Research Institute, Taedok Science Town) ;
  • Du-Jeon Jang (Spectroscopy and Color Laboratory, Korea Standards Research Institute, Taedok Science Town) ;
  • Dongho Kim (Spectroscopy and Color Laboratory, Korea Standards Research Institute, Taedok Science Town) ;
  • Sun Sook Lee (Department of Chemistry, Choongnam National University) ;
  • Bong Hyun Boo (Department of Chemistry, Choongnam National University)
  • Published : 1991.08.20

Abstract

The photoinduced electron transfer reactions of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in various polar solvents were studied by measuring time-resolved fluorescence. The temperature dependence on the fluorescence decay rate in acetonitrile, methanol, ethanol and buthanol was carried out to obtain the activation energy and Arrehnius factor for the photoinduced electron transfer reaction. It was found that as the dielectric constant of the solvent increases, the activation energy and the reaction rate increase. This implys that the Arrehnius factor is important in controlling the photoinduced electron transfer reaction rate. In water, TMPD exists in three forms (cationic, protonated and neutral forms) due to the high dielectric constant and strong proton donating power of water. The photoinduced electron transfer reaction was found to be very fast (< 50 ps) and also the long liverd component in the fluorescence decay profile attributable to the photoexcited protonated form of TMPD was observed. Probably, the reaction pathway and the reaction coordinate seem to be different depending on the solvents studied here.

Keywords

References

  1. Molecular Association v.2 N. Mataga;M. Ottolenghi;R. Foster(ed.)
  2. Organic Molecular Photophysics v.1 R. Lesclaux;J. Joussot-Dubien;J. B. Birks(ed.)
  3. Pure Appl. Chem. v.56 N. Mataga
  4. Molecular Interactions v.2 N. Mataga;H. Ratajczak;W. J. Orville-Thomas(Ed.)
  5. J. Phys. Chem. v.90 N. Mataga;Y. Kanda;T. Okada
  6. J. Phys. Chem. v.91 N. Mataga;H. Shioyama;Y. Kanda
  7. Chem. Phys. v.127 N. Mataga;Y. Kanda;T. Ashahi;H. Miyasaka;T. Okada;T. Kakitani
  8. Ultrafast Phenomena v.VI N. Mataga;H. Miyasaka;T. Ashahi;S. Ojima;T. Okada
  9. Biochim. Biophys. Acta v.811 R. A. Marcus;N. Sutin
  10. Chem. Phys. v.86 B. Bagchi;D. W. Oxtoby;G. Fleming
  11. J. Chem. Phys. v.84 H. Sumi;R. A. Marcus
  12. Photochemical Energy Conversion N. Mataga;J. T. Norris(ed.);D. Meisel(ed.)
  13. J. Chem. Phys. v.91 M. Kahlow;T. J. Kang;P. F. Barbara
  14. Chem. Phys. Lett. v.17 A. Bernas;M. Gauthier;D. Grand;G. Parlaut
  15. Chem. Phys. Lett. v.17 A. Alchalal;M. Ottolenghi
  16. J. Phys. Chem. v.87 Y. Hirata;M. Mataga
  17. J. Phys. Chem. v.88 Y. Hirata;M. Mataga
  18. Bull. Chem. Soc. Jpn. v.57 S. Nakamura;N. Kanamaru;S. Nohara;M. Nakamura;Y. Saito;J. Tanaka;M. Sumitani;N. Nakashima;K. Yoshihara
  19. Trans. Faraday Soc. v.66 J. T. Richards;J. K. Thomas
  20. J. Phys. Chem. v.89 Y. Hirata;N. Mataga
  21. J. Photochem. v.38 H. Isaka;S. Suzuki;T. Ohzeki;Y. Sakaino;H. Takahashi
  22. J. Phys. Chem. v.93 H. Miyasaka;S. Ojima;N. Mataga
  23. J. Phys. Chem. v.93 N. Mataga;H. Yao;T. Okada;W. Rettig

Cited by

  1. Electrochemically active phenylenediamine probes for transition metal cation detection vol.35, pp.3, 1991, https://doi.org/10.1039/c0nj00638f