• Title/Summary/Keyword: Proton exchange

Search Result 620, Processing Time 0.031 seconds

Decrease of PEMFC Performance by SO2 in Air (공기 중 SO2에 의한 고분자전해질 연료전지의 성능 감소)

  • Lee, Ho;Song, Jinhoon;Kim, Kijoong;Kim, Saehoon;Ahn, Byungki;Lim, Taewon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.311-315
    • /
    • 2010
  • The effects of $SO_2$ on the performance of proton exchange membrane(PEMFC) were investigated by introduction air containing $SO_2$ into cathode inlet of PEMFC. And the recovery of the cell performance by applying clean air, cycle voltammetry(CV) and high voltage holding following exposure contaminated air was studied. The $SO_2$ concentration range used in the experiments was from 20 ppb to 1.3 ppm. The performance degradation and recovery were measured by constant-current discharging, I-V polarization and electrochemical impedance spectroscopy(EIS). The cell voltage gradually decayed with time and decreased by 17 mV after 200 hours of 20 ppb $SO_2$ injection. The cell performance can be recovered partially by clean air flushing, CV and high voltage holding due to desorption of S from Pt catalyst.

Effect of Support on the Performance and Electrochemical Durability of Membrane in PEMFC (PEMFC의 고분자막에서 지지체가 고분자전해질 막 성능 및 전기화학적 내구성에 미치는 영향)

  • Oh, Sohyung;Lim, Dae Hyun;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.524-529
    • /
    • 2020
  • To increase the mechanical durability of the proton exchange membrane fuel cells, a reinforced membrane in which a support is placed in the polymer membrane is used. The support mainly uses e-PTFE, which is hydrophobic and does not transfer ions, which may cause performance degradation. In this study, we investigated the effect of e-PTFE support on PEMFC performance and electrochemical durability. In this study, the reinforced membrane with the support was compared with the single membrane (non-reinforced membrane). Due to the hydrophobicity of the support, the water diffusion coefficient of the reinforced membrane was lower than that of the single membrane. The reinforced membrane had a lower water diffusion coefficient, resulting in higher HFR, which is the membrane migration resistance of ions, than that of a single membrane. Due to the low hydrogen permeability of the support, the OCV of the reinforced membrane was higher than that of the single membrane. The support was shown to reduce the hydrogen permeability, thereby reducing the rate of radical generation, thereby improving the electrochemical durability of the reinforced membrane.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Characteristic analysis of The Catalyst Layer and Gas Diffusion Layer Model for FEMFC optimal design (FEMFC 최적설계를 위한 촉매층모델과 기체확산층 특성해석)

  • Kwon, Kee-Hong
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • Proton Exchange Membrane Fuel Cell (FEMFC) is a strong candidate for future automobile and power generation because of its high power density, low emission and low operation temperature. The major concerns of the gas diffusion layer (GDL) inside a FEMFC is water management. The GDL is typically comprised of carbon for electrical conductivity and PTFE for Hydrophobicity. In this simulation, GDL flooding was investigated using a simplified approach method of an established equation models(Fick' Law, Darcy, Law, Stefan-Maxwell diffusion). The performance of GDL was shown using result of the inner heat, water density and oxygen density of the cell using model equations. The catalyst layer mode in FEMFC showed results of effectiveness factor, Butler-volmer and hydrogen flux density. These results are interesting because the influence of several factors has been shown and the information will be helpful for fuel cell design.

A Basic Experimental Study on Performance of Proton Exchange Membrane Fuel Cell System for Vehicle (PEM 연료전지 자동차 적용을 위한 성능실험에 관한 기초연구)

  • Lee, Hyun-kun;Oh, Byeong-soo;Jeong, Kwiseong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.3
    • /
    • pp.137-147
    • /
    • 2000
  • Not only study of fuel cell performance but study of fuel cell application is very important, therefore these studies were paralleled together for the commercialization of exciting power generation. The objective of this study is to determine the characteristics of shaft power and efficiency as a function of rpm and to compare natural convection air method to forced air method. From these results, performance of forced air was better than that of natural convection air because it enables to improve mass transportation by increasing air flow rate. With decreasing shaft power, efficiency of fuel cell decreases remarkably because dc motor drives at the low range of efficiency. Fuel cell powered vehicle has to be driven considering efficiency and shaft power. It should be driven at 35-45% of efficiency and 0.55-0.75v/cell.

  • PDF

The Effect of Methane in Hydrogen on the Performance of Proton Exchange Membrane Fuel Cell (수소연료 중의 메탄에 의한 고분자전해질 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jun-Taek;Kim, Jun-Bum;Chung, Jong-Tae;Kim, Woo-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.432-438
    • /
    • 2007
  • The reforming process for hydrogen production generates some impurities. Impurities in hydrogen such as $CO_2$, CO, $H_2S$, $NH_3$ affect fuel cell performance. It is well known that CO generated by the reforming process may negatively affect performance of cell, cause damage on catalysts resulting performance degradation. Hydrogen produced by reforming process includes about 2% methane. The presence of methane up to 10% is reported negligible degradation in cell performance. However, methane more than 10% in hydrogen stream had not been researched. The concentration of impurity supplied to the fuel cell was verified by gas chromatography(GC). In this study, the influence of $CH_4$ on performance of PEM fuel cell was investigated by means of current vs. potential experiment, long run(10 hr) test and electrochemical impedance measurement when the concentrations of impurities were 10%, 20% and 30%.

Effects of 3D Flow-Channel Configurations on the Performance of PEMFC using Computational Fluid Dynamics (전산유체역학을 이용한 PEMFC의 성능에 대한 3차원 유로 구조의 영향)

  • Han, Kyoung-Ho;Yoon, Do Young
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.847-853
    • /
    • 2016
  • Here has been examined a 3-dimensional computational fluid dynamics (CFD) modeling in order to investigate the performance analysis of proton exchange membrane (PEM) fuel cells with serpentine flow fields. The present CFD model considers the isothermal transport phenomena in a fuel cell involving mass, momentum transport, electrode kinetics, and potential fields. Co-current flow patterns for a PEMFC are considered for various geometries in the single straight cell. Current density distribution from the calculated distribution of oxygen and hydrogen mass fractions has been determined, where the activation overpotential has been also calculated within anode and cathode. CFD results showed that profiles differ from those simulations subjected to each the calculated activation overpotential. It is interesting that the present serpentine flow field shows the specific distribution of current density with respect to the aspect ratio of depth to width and the ratio of reaction area for various serpentine geometries. Simulation results were considered reasonable with the other CFD results reported in literature and global comparisons of the PEMFC model.

Variation of Hydrogen Peroxide Concentration during Fenton Reaction for Test the Membrane Durability of PEMFC (PEMFC 고분자막 내구 평가를 위한 Fenton 반응에서 과산화수소 농도 변화에 관한 연구)

  • Oh, Sohyung;Kim, Jeongjae;Lee, Daewoong;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.315-319
    • /
    • 2018
  • Fenton reaction is widely used as a out of cell method for evaluating the membrane electrochemical durability of Proton Exchange Fuel Cell (PEMFC). In this study, we investigated the factors affecting the Fenton reaction. In order to estimate the degree of the reaction, it is necessary to analyze the radicals as a product in the Fenton reaction. However, since the radicals are difficult to analyze, the degree of the reaction was measured by analyzing the concentration of hydrogen peroxide. The activation energy was calculated from the rate of hydrogen peroxide change with temperature. The activation energy was 24.9 kJ/mol at 180 min. The Fenton reaction rate was affected by the iron ion concentration. At $80^{\circ}C$, 200 rpm, and $Fe^{2+}$ 80 ppm, the concentration of hydrogen peroxide was decreased more than 20% even for 1 hour, which shows that frequent solution replacement increases the membrane degradation rate.

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA (가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화)

  • Kim, Young-Sook;Chu, Cheun-Ho;Jeong, Jae-Jin;Ahn, Myung-Won;Na, Il-Chai;Lee, Jeong-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell (미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산)

  • Lee, Yu-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).