• 제목/요약/키워드: Proton accelerator

검색결과 120건 처리시간 0.03초

Recent Status of Commercial PET Cyclotron and KOTRON-13 (KOTRON-13과 상용 PET 사이클로트론의 최근 기술 동향)

  • Chai, Jong-Seo
    • The Korean Journal of Nuclear Medicine
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2005
  • This paper is described on the development of KOTRON-13 and recent status of PET cyclotron by commercial cyclotron companies. KIRAMS has developed medical cyclotron which is KIRAMS-13. Samyoung Unitech produces KOTRON-13 with transfered technology by KIRAMS. As a part of Regional Cyclotron Installation Protect, KOTRON-13 cyclotrons and $[18F]FDG$ production modules are being installed at regional cyclotron centers in Korea. The medical concern with radiation technology has been growing for the last several years. Early cancer diagnosis through the cyclotron and PET-CT have been brought to public attention by commercial cyclotron models in the world. The new commercial cyclotron models are introduced compact low energy cyclotrons developed by CTI, GE, Sumitomo in recent. It produces different short-lived radioisotopes, such as $[^{18}F],\;[^{11}C],\;[^{13}N]\;and\;[^{15}O]$. For the better reliability acceleration particle is proton only. The characteristics of new model cyclotrons are changed to lower energy corresponding to less 13 MeV. New models have self-shielding and low power consumption. Design criteria for the different types of commercial cyclotrons are described with reference to hospital demands.

Consideration about LINAC movable range by H&N patient immobilization device manufacture (두경부환자 고정기구제작을 통한치료기 가동범위에 관한 고찰)

  • Jung DoHyung;Shim JinSeop;Youm DuSeok;Choi GyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • 제16권2호
    • /
    • pp.63-67
    • /
    • 2004
  • Purpose : New therapy technique appeared in 3D-CRT or IMRT according to a radiation treatment developing and worked. Such treatment technique requires the radiation irradiation of many direction. It has many restriction at radiation irradiation of many direction to the linear acceleration deception of now actually. Consequently We make new fix device and measure consequently the improvement of the activate range. Method and Material : We upload the fix device on a linear accelerator Couch. We fixed Gantry at 45, 90, 135 and Couch is spin and measure the clearance of the equipment. Couch is fixed at 0 45 90 and measures the clearance of Gantry. We upload the Extended head holder(EHH) on a linear accelerator Couch. and We measure with the experiment of the front. Result : The action range did not have big difference to increase Gantry45. but The activate range of Couch increases the angle in Gantry 90 and Gantry 135 when it uses EHH. The activate range of Gantry increases the angle in Couch 45 when it uses EHH. We showed good activate situation all in Couch 0 and Couch 90. The utility of EHH could keep a behind radiation diminution. Conclusion : The radiation irradiation of many direction comes to be possible the utility of the fix instrument(EHH). The safety space between the patient and equipment or between equipment and equipment increased the utility of the fix device. Also, The manufacture is possible imports to rather cheap price. and We could bring the frugality of the treatment expendable supplies.

  • PDF

Dose Characteristics of Stereotactic Radiosurgery in High Energy Linear Accelerator Proton Beam (고에너지 선형가속기에 의한 입체방사선수술의 선량특성)

  • Choi, Tae-Jin;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • 제10권2호
    • /
    • pp.137-145
    • /
    • 1992
  • Three-dimensional dose calculations based on CT images are fundamental to stereotactic radiosurgery for small intracranial tumor. In our stereotactic radiosurgery program, irradiations have been performed using the 6 MV photon beam of linear accelerator after stereotactic CT investigations of the target center through the beam's-eye view and the coordinates of BRW frame converted to that of radiosurgery. Also we can describe the tumor diameter and the shape in three dimensional configuration. Non-coplanar irradiation technique was developed that it consists of a combination of a moving field with a gantry angle of $140^{\circ}$, and a horizontal couch angle of $200^{\circ}C$ around the isocenter. In this radiosurgery technique, we provide the patient head setup in the base-ring holder and rotate around body axis. The total gantry moving range shows angle of 2520 degrees via two different types of gantry movement in a plane perpendicular to the axis of patient. The 3-D isodose curves overlapped to the tumor contours in screen and analytic dose profiles in calculation area were provided to calculate the thickness of $80\%$ of tumor center dose to $20\%$ of that. Furtheremore we provided the 3-D dose profiles in entire calculation plane. In this experiments, measured isodose curves in phantom irradiation have shown very similiar to that of computer generations.

  • PDF

Study on Concrete Activation Reduction in a PET Cyclotron Vault

  • Bakhtiari, Mahdi;Oranj, Leila Mokhtari;Jung, Nam-Suk;Lee, Arim;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • 제45권3호
    • /
    • pp.130-141
    • /
    • 2020
  • Background: Concrete activation in cyclotron vaults is a major concern associated with their decommissioning because a considerable amount of activated concrete is generated by secondary neutrons during the operation of cyclotrons. Reducing the amount of activated concrete is important because of the high cost associated with radioactive waste management. This study aims to investigate the capability of the neutron absorbing materials to reduce concrete activation. Materials and Methods: The Particle and Heavy Ion Transport code System (PHITS) code was used to simulate a cyclotron target and room. The dimensions of the room were 457 cm (length), 470 cm (width), and 320 cm (height). Gd2O3, B4C, polyethylene (PE), and borated (5 wt% natB) PE with thicknesses of 5, 10, and 15 cm and their different combinations were selected as neutron absorbing materials. They were placed on the concrete walls to determine their effects on thermal neutrons. Thin B4C and Gd2O3 were placed between the concrete wall and additional PE shield separately to decrease the required thickness of the additional shield, and the thermal neutron flux at certain depths inside the concrete was calculated for each condition. Subsequently, the optimum combination was determined with respect to radioactive waste reduction, price, and availability, and the total reduced radioactive concrete waste was estimated. Results and Discussion: In the specific conditions considered in this study, the front wall with respect to the proton beam contained radioactive waste with a depth of up to 64 cm without any additional shield. A single layer of additional shield was inefficient because a thick shield was required. Two-layer combinations comprising 0.1- or 0.4-cm-thick B4C or Gd2O3 behind 10 cm-thick PE were studied to verify whether the appropriate thickness of the additional shield could be maintained. The number of transmitted thermal neutrons reduced to 30% in case of 0.1 cm-thick Gd2O3+10 cm-thick PE or 0.1 cm-thick B4C+10 cm-thick PE. Thus, the thickness of the radioactive waste in the front wall was reduced from 64 to 48 cm. Conclusion: Based on price and availability, the combination of the 10 cm-thick PE+0.1 cmthick B4C was reasonable and could effectively reduce the number of thermal neutrons. The amount of radioactive concrete waste was reduced by factor of two when considering whole concrete walls of the PET cyclotron vault.

Comparative Evaluation of Radioactive Isotope in Concrete by Heavy Ion Particle using Monte Carlo Simulation (몬테카를로 시뮬레이션을 통한 중하전입자의 콘크리트 방사화 비교평가)

  • Bae, Sang-Il;Cho, Yong-In;Kim, Jung-Hoon
    • Journal of radiological science and technology
    • /
    • 제44권4호
    • /
    • pp.359-365
    • /
    • 2021
  • A heavy particle accelerator is a device that accelerates particles using high energy and is used in various fields such as medical and industrial fields as well as research. However, secondary neutrons and particle fragments are generated by the high-energy particle beam, and among them, the neutrons do not have an electric charge and directly interact with the nucleus to cause radiation of the material. Quantitative evaluation of the radioactive material produced in this way is necessary, but there are many difficulties in actual measurement during or after operation. Therefore, this study compared and evaluated the generated radioactive material in the concrete shield for protons and carbon ions of specific energy by using the simulation code FLUKA. For the evaluation of each energy of proton beam and carbon ion, the reliability of the source term was secured within 2% of the relative error with the data of the NASA Space Radiation Laboratory(NSRL), which is an internationally standardized data. In the evaluation, carbon ions exhibited higher neutron flux than protons. Afterwards, in the evaluation of radioactive materials under actual operating conditions for disposal, a large amount of short-lived beta-decay nuclides occurred immediately after the operation was terminated, and in the case of protons with a high beam speed, more radioactive products were generated than carbon ions. At this time, radionuclides of 44Sc, 3H and 22Na were observed at a high rate. In addition, as the cooling time elapsed, the ratio of long-lived nuclides increased. For nonparticulate radionuclides, 3H, 22Na, and for particulate radionuclides, 44Ti, 55Fe, 60Co, 152Eu, and 154Eu nuclides showed a high ratio. In this study, it is judged that it is possible to use the particle accelerator as basic data for facility maintenance, repair and dismantling through the prediction of radioactive materials in concrete according to the cooling time after operation and termination of operation.

A Study on the Improvement of Gamma Ray Energy Spectrum Resolution through Electrical Noise Reduction of High Purity Ge Detector (고순도 Ge 검출기의 전기적 노이즈 감소를 통한 감마선 에너지 스펙트럼의 분해능 향상에 관한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • 제14권7호
    • /
    • pp.849-856
    • /
    • 2020
  • In the gamma-ray energy spectrum study, nuclide analysis through energy analysis is very important. High-purity Ge detectors, which are commonly used for gamma-ray energy measurements, are commonly used because of their high energy resolution and relatively high detection efficiency. However, in order to maintain a high energy resolution, the semiconductor detector has a problem in that it is difficult to maintain the original performance if the noise generated from the surrounding environment is not effectively blocked, and the effect of the expensive device is not achieved. Therefore, in this study, ground loop isolator (NEXT-001HDGL) was used to remove the electrical noise generated from the detector. In order to test the effect of improving energy resolution, HPGe detection device newly installed in the proton accelerator KOMAC was used. In the case of gamma-ray energy 2614 keV, the energy resolution was improved from (0.16 ± 0.02) % to (0.11 ± 0.01) %, and in the case of gamma-ray energy 662 keV of 137Cs isotope, the energy resolution was improved from (0.72 ± 0.07) % to (0.27 ± 0.03) %. This result is considered to be very useful for the gamma ray spectrum study using the HPGe detection equipment of KOMAC(Korea Multi-Purpose Accelerator Complex).

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

A Study on PIXE Spectrum Analysis for the Determination of Elemental Contents (원소별 함량결정을 위한 PIXE 스펙트럼 분석에 관한 연구)

  • Jong-Seok OH;;Hae-ILL Bak
    • Nuclear Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.101-107
    • /
    • 1990
  • The PIXE (Proton Induced X-ray Emission) method is applied to the quantitative analysis of trace elements in tap water, red wine, urine and old black powder samples. Sample irradiations are performed with a 1.202 MeV proton beam from the SNU 1.5-MV Tandem Van de Graaff accelerator, and measurements of X-ray spectra are made by the Si(Li) spectrometer To increase the sensitivity of analysis tap water is preconcentrated by evaporation method. As an internal standard, Ni powder is mixed with black powder sample and yttrium solution is added to the other samples. The analyses of the PIXE spectra are carried out by using the AXIL (Analytical X-ray Analysis by Iterative Least-squares) computer code, in which the routine for least-squares method is based on the Marquardt algorithm. The elements such as Mg, Al, Si, Ti, Fe and Zn are analyzed at sub-ppm levels in the tap water sample. In the red wine sample prepared without preconcentration. the element Ti is detected in the amount of 3ppm. In conclusion, the PIXE method is proved to be appropriate for the analysis of liquid samples by relative measurements using the internal standard. and is expected to be improved by the use of evaluated X-ray production cross-sections and the development of sample preparation techniques.

  • PDF

R&D ACTIVITIES FOR PARTITIONING AND TRANSMUTATION IN KOREA

  • Yoo, Jae-Hyung;Song, Tae-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 한국방사성폐기물학회 2004년도 Proceedings of the 4th Korea-China Joint Workshop on Nuclear Waste Management
    • /
    • pp.150-164
    • /
    • 2004
  • According to the Korean long-term plan for nuclear technology development, KAERI is conducting a few R&D projects related to the proliferation-resistant back-end fuel cycle. The R&D activities for the back-end fuel cycle are reviewed in this work, especially focusing on the study of the partitioning and transmutation(P&T) of long-lived radionuclides. The P&T study is currently being carried out in order to develop key technologies in the areas of partitioning and transmutation. The partitioning study is based on the development of pyroprocessing such as electrorefining and electrowinning because they can be adopted as proliferation-resistant technologies in the fuel cycle. In this study, various behaviors of the electrodeposition of uranium and rare earth elements in the LiCl-KCl electrorefining system have been examined through fundamental experimental work. As for the transmutation system, KAERI is studying the HYPER (HYbrid Power Extraction Reactor), a kind of subcritical reactor which will be connected with a proton accelerator. Up to now, a conceptual study has been carried out for the major elemental systems of the subcritical reactor such as core, transuranic fuel, long-lived fission product target, and the Pb-Bi cooling system, etc. In order to enhance the transmutation efficiency of the transuranic elements as well as to strengthen the reactor safety, the reactor core was optimized by determining its most suitable subcriticality, the ratio of height/diameter, and by introducing the concepts of optimum core configuration with a transuranic enrichment as well as a scattered reloading of the fuel assemblies.

  • PDF

Error Correction Code and SEU Test Analysis of Mass Memory for STSAT-3 (과학기술위성 3호 대용량 메모리에 대한 오류복구 코드 및 SEU 시험 결과 분석)

  • Seo, In-Ho;Ryu, Kwang-Sun;Oh, Dae-Soo;Kim, Byung-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제38권1호
    • /
    • pp.87-93
    • /
    • 2010
  • RS(10,8) Code by 4-bit symbol was developed to protect the mass memory of STSAT-3 from SEU in orbit. Therefore, one symbol can be corrected for 32-bit data with 8-bit parity configuration. Moreover, scrubbing period and SEU occurrence rate was calculated based on the KITSAT-3 result. A prediction of SEU rates was performed based on the ground experiment results with a proton accelerator in the KIRAMS(Korea Institute of Radiological Medical Sciences).