• Title/Summary/Keyword: Proteome analysis

Search Result 320, Processing Time 0.031 seconds

Proteomic Comparison between Japanese Black and Holstein Cattle by Two-dimensional Gel Electrophoresis and Identification of Proteins

  • Ohsaki, H.;Okada, M.;Sasazaki, S.;Hinenoya, T.;Sawa, T.;Iwanaga, S.;Tsuruta, H.;Mukai, F.;Mannen, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.638-644
    • /
    • 2007
  • Differences of meat qualities between Japanese Black and Holstein have been known in Japan, however, the causative proteins and/or the genetic background have been unclear. The aim of this study was to identify candidate proteins causing differences of the meat qualities between the two breeds. Using technique of two-dimensional gel electrophoresis, protein profiling was compared from samples of the longissimus dorsi muscle and subcutaneous adipose tissue. Five protein spots were observed with different expression levels between breeds. By using LC-MS/MS analysis and Mascot program, three of them were identified as ankyrin repeat protein 2, phosphoylated myosin light chain 2 and mimecan protein. Subsequently, we compared the DNA coding sequences of three proteins between breeds to find any nucleotide substitution. However, there was no notable mutation which could affect pI or molecular mass of the proteins. The identified proteins may be responsible for different characteristics of the meat qualities between Japanese Black and Holstein cattle.

Serum Periplakin as a Potential Biomarker for Urothelial Carcinoma of the Urinary Bladder

  • Matsumoto, Kazumasa;Ikeda, Masaomi;Matsumoto, Toshihide;Nagashio, Ryo;Nishimori, Takanori;Tomonaga, Takeshi;Nomura, Fumio;Sato, Yuichi;Kitasato, Hidero;Iwamura, Masatsugu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9927-9931
    • /
    • 2014
  • The objectives of this study were to examine serum periplakin expression in patients with urothelial carcinoma of the urinary bladder and in normal controls, and to examine relationships with clinicopathological findings. Detection of serum periplakin was performed in 50 patients and 30 normal controls with anti-periplakin antibodies using the automatic dot blot system, and a micro-dot blot array with a 256 solid-pin system. Levels in patients with urothelial carcinoma of the urinary bladder were significantly lower than those in normal controls (0.31 and 5.68, respectively; p<0.0001). The area under the receiver-operator curve level for urothelial carcinoma of the urinary bladder was 0.845. The sensitivity and specificity, using a cut-off point of 4.045, were 83.7% and 73.3%, respectively. In addition, serum periplakin levels were significantly higher in patients with muscle-invasive cancer than in those with nonmuscle-invasive cancer (P = 0.03). In multivariate Cox proportional hazards regression analysis, none of the clinicopathological factors was associated with an increased risk for progression and cancer-specific survival. Examination of the serum periplakin level may play a role as a non-invasive diagnostic modality to aid urine cytology and cystoscopy.

Identification of Proteins Affected by Iron in Saccharomyces cerevisiae Using Proteome Analysis

  • Lieu Hae-Youn;Song Hyung-Seok;Yang Seung-Nam;Kim Jae-Hwan;Kim Hyun-Joong;Park Young-Doo;Park Cheon-Seok;Kim Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.946-951
    • /
    • 2006
  • To study the effect of iron on Saccharomyces cerevisiae, whole-cell proteins of Saccharomyces cerevisiae were extracted and subjected to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and differentially expressed proteins were identified. The proteins separated were further identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and were compared with a protein database. Of more than 300 spots separated by molecular weight and isoelectric points, 27 differentially expressed spots were identified. Ten proteins were found to be differentially expressed at high iron concentration. Triosephosphate isomerase (TPI), YDR533C hypothetical protein, superoxide dismutase (SOD), 60 kDa heat-shock protein (HSP60), pyruvate dehydrogenase beta subunit 1 (PDB1), and old yellow enzyme 2 (OYE2) were upregulated, whereas thiol-specific antioxidant (TSA), regulatory particle non-ATPase subunit 8 (RPN8), thiol-specific peroxiredoxin 1 (AHP1), and fructose-1, 6-bisphosphate adolase (FBA) were downregulated by iron. Based on the result, we propose that SOD upregulated by iron would protect the yeast from oxidative stress by iron, and that TSA downregulated by iron would render cells hypersensitive to oxidative stress.

Comparative proteome analysis of seeds of proso millet (Panicum miliaceum) cultivars

  • Roy, Swapan Kumar;Kwon, Soo Jeong;Park, Hyeong-Jun;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.120-120
    • /
    • 2017
  • Since the composition of proteins from the Korean cultivars of Proso millet is unknown; thereby, the present study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from the millet seeds of various cultivars, were investigated using proteomic techniques as 2D electrophoresis coupled with mass fingerprinting. The 1152 (differentially expressed) proteins were detected on 2-D gel. Among them, 26 reproducible protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Out of 26 proteins, 2 proteins were up-regulated towards all cultivars of millet, while 7 proteins were up-regulated and 13 proteins were down-regulated against only one cultivar. However, abundance in most identified protein species, associated with metabolism, transcription and transcription was significantly enhanced, while that of another protein species involved in polysaccharide metabolism, stress response and pathogenesis were severely reduced. Taken together, the results observed from the study suggest that the differential expression of proteins from the four cultivars of millet may be cultivar-specific. Taken together, a proteomic investigation of millet seeds from different cultivars, we sought to better understand the genetic variation of millet cultivars representing the future millet research, and the functional categorization of individual proteins on the basis of their molecular function.

  • PDF

Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment

  • Um, Hae Young;Kong, Hyun Gi;Lee, Hyoung Ju;Choi, Hye Kyung;Park, Eun Jin;Kim, Sun Tae;Murugiyan, Senthilkumar;Chung, Eunsook;Kang, Kyu Young;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.374-385
    • /
    • 2013
  • Environmental stresses induce several plant pathogenic bacteria into a viable but nonculturable (VBNC) state, but the basis for VBNC is largely uncharacterized. We investigated the physiology and morphology of the copper-induced VBNC state in the plant pathogen Ralstonia solanacearum in liquid microcosm. Supplementation of $200{\mu}M$ copper sulfate to the liquid microcosm completely suppressed bacterial colony formation on culture media; however, LIVE/DEAD BacLight bacterial viability staining showed that the bacterial cells maintained viability, and that the viable cells contain higher level of DNA. Based on electron microscopic observations, the bacterial cells in the VBNC state were unchanged in size, but heavily aggregated and surrounded by an unknown extracellular material. Cellular ribosome contents, however, were less, resulting in a reduction of the total RNA in VBNC cells. Proteome comparison and reverse transcription PCR analysis showed that the Dps protein production was up-regulated at the transcriptional level and that 2 catalases/peroxidases were present at lower level in VBNC cells. Cell aggregation and elevated levels of Dps protein are typical oxidative stress responses. $H_2O_2$ levels also increased in VBNC cells, which could result if catalase/peroxidase levels are reduced. Some of phenotypic changes in VBNC cells of R. solanacearum could be an oxidative stress response due to $H_2O_2$ accumulation. This report is the first of the distinct phenotypic changes in cells of R. solanacearum in the VBNC state.

Gene annotation by the "interactome"analysis in KEGG

  • Kanehisa, Minoru
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.56-58
    • /
    • 2000
  • Post-genomics may be defined in different ways depending on how one views the challenges after the genome. A popular view is to follow the concept of the central dogma in molecular biology, namely from genome to transcriptome to proteome. Projects are going on to analyze gene expression profiles both at the mRNA and protein levels and to catalog protein 3D structure families, which will no doubt help the understanding of information in the genome. However complete, such catalogs of genes, RNAs, and proteins only tell us about the building blocks of life. They do not tell us much about the wiring (interaction) of building blocks, which is essential for uncovering systemic functional behaviors of the cell or the organism. Thus, an alternative view of post-genomics is to go up from the molecular level to the cellular level, and to understand, what I call, the "interactome"or a complete picture of molecular interactions in the cell. KEGG (http://www.genome.ad.jp/kegg/) is our attempt to computerize current knowledge on various cellular processes as a collection of "generalized"protein-protein interaction networks, to develop new graph-based algorithms for predicting such networks from the genome information, and to actually reconstruct the interactomes for all the completely sequenced genomes and some partial genomes. During the reconstruction process, it becomes readily apparent that certain pathways and molecular complexes are present or absent in each organism, indicating modular structures of the interactome. In addition, the reconstruction uncovers missing components in an otherwise complete pathway or complex, which may result from misannotation of the genome or misrepresentation of the KEGG pathway. When combined with additional experimental data on protein-protein interactions, such as by yeast two-hybrid systems, the reconstruction possibly uncovers unknown partners for a particular pathway or complex. Thus, the reconstruction is tightly coupled with the annotation of individual genes, which is maintained in the GENES database in KEGG. We are also trying to expand our literature surrey to include in the GENES database most up-to-date information about gene functions.

  • PDF

Differential Proteome Analysis of Breast and Thigh Muscles between Korean Native Chickens and Commercial Broilers

  • Liu, Xian De;Jayasena, Dinesh D.;Jung, Yeon-Kuk;Jung, Samooel;Kang, Bo-Seok;Heo, Kang-Nyeong;Lee, Jun-Heon;Jo, Cheo-Run
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.895-902
    • /
    • 2012
  • The Korean native chickens (Woorimotdak$^{TM}$, KNC) and commercial broilers (Ross, CB) show obvious differences in meat flavor after cooking. To understand the contribution of protein and peptide for meat flavor, 2-dimensional (2-D) gel electrophoresis and matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry was performed. A total of 16 protein spots were differentially expressed in the breast and thigh meat between the two breeds. A total of seven protein spots were represented by different levels between KNC and CB for breast meat. Among them three protein spots (TU39149, TU40162 and TU39598) showed increases in their expressions in KNC while other four protein spots (BU40125, BU40119, BU40029 and BU39904) showed increases in CB. All nine protein spots that were represented by different levels between KNC and CB for thigh meat showed increases in their expression in KNC. Phosphoglucomutase 1 (PGM 1), myosin heavy chain (MyHC), heat shock protein B1 (HSP27), cytochrome c reductase (Enzyme Q), Glyoxylase 1, DNA methyltransferase 3B (DNA MTase 3) were identified as the main protein spots by MALDI-TOF mass spectrometry. These results can provide valuable basic information for understanding the molecular mechanism responsible for breed specific differences in meat quality, especially the meat flavour.

Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains

  • Han, Mee-Jung;Lee, Sang-Yup;Hong, Soon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.470-478
    • /
    • 2012
  • Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane ${\beta}$-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.

The Use of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) for Proteomics Research

  • Ng, Justin Tze-Yang;Hao, Piliang;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.95-103
    • /
    • 2014
  • Characterization and studies of proteome are challenging because biological samples are complex, with a wide dynamic range of abundance. At present the proteins are identified by digestion into peptides, with subsequent identification of the peptides by mass spectrometry (MS). MS is a powerful technique for the purpose, but it cannot identify every peptide in such complex mixtures simultaneously. For accurate analysis and quantification it is important to separate the peptides first by chromatography into fractions of a size that MS can handle. With these less complex fractions, the probability is increased of identifying peptides of low abundance that would otherwise experience ion suppression effects due to the presence of peptides of high abundance. Enrichment for peptides with certain post-translational modifications helps to increase their detection rates as well. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is a mixed-mode chromatographic technique which combines the use of electrostatic repulsion and hydrophilic interaction. This review provides an overview of ERLIC and its various proteomics applications. ERLIC has been demonstrated to have good orthogonality to reverse phase liquid chromatography (RPLC), making it useful as a first dimension in multidimensional liquid chromatography (MDLC) and fractionation of digests in general. Peptides elute in order of their isoelectric points and polarity. ERLIC has also been successfully utilized for the enrichment for phosphopeptides and glycopeptides, facilitating their identification. In addition, it is promising for the study of peptide deamidation. ERLIC performs comparably well or better than established methods for these various applications, and serves as a viable and efficient workflow alternative.

The Cosmeceutical Property of Antioxidant Astaxanthin is Enhanced by Encapsulation Using Glyceryl Based New Vesicle (글리세릴 베이스의 신규베지클 이용 캡슐화를 통한 항산화성 아스타잔틴의 성질 강화)

  • Kim, Dong Myung;Hong, Weon Ki;Kong, Soo Sung;Lee, Chung Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.247-257
    • /
    • 2014
  • Oil-in-water nanoemulsions of astaxanthin prepared by new vesicle, glyceryl citrate/ lactate/ linoleate/ oleate, were evaluated thoroughly in terms of cosmeceutical properties such as antioxidant effect, cell viability, influence of protein related enzyme, skin penetration, skin hydration and elasticity. Antioxidant effect and cell viability of nanoemulsion of astaxanthin were evaluated by DPPH and MTT assay. Also other properties of nanoemulsions of astaxanthin were measured by proteome analysis using 2D-PAGE, confocal laser scanning microscope and in-vivo test. We were able to find that the nanoemulsion of astaxanthin is good at scavenging of radical and inhibits the degradation of dermal extracellular matrix with the down-regulation of MMPs and other proteins related to MMP expression. CLSM was adopted for observing penetration of nanoemulsion of astaxanthin and showed high effective penetration rate compared to the nanoemulsion of astaxanthin prepared by conventional lecithin. In-vivo measurement of the nanoemulsions in hydration and elasticity were conducted to 11 Korean female adults for 28 days and showed better results.