DOI QR코드

DOI QR Code

Comparative Analysis of Envelope Proteomes in Escherichia coli B and K-12 Strains

  • Han, Mee-Jung (Department of Biomolecular and Chemical Engineering, Dongyang University) ;
  • Lee, Sang-Yup (Departments of Chemical and Biomolecular Engineering (BK21 Program), Bio and Brain Engineering, and Biological Sciences, BioProcess Engineering Research Center, Bioinformatics Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST) ;
  • Hong, Soon-Ho (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • Received : 2011.10.28
  • Accepted : 2011.12.10
  • Published : 2012.04.28

Abstract

Recent genome comparisons of E. coli B and K-12 strains have indicated that the makeup of the cell envelopes in these two strains is quite different. Therefore, we analyzed and compared the envelope proteomes of E. coli BL21(DE3) and MG1655. A total of 165 protein spots, including 62 nonredundant proteins, were unambiguously identified by two-dimensional gel electrophoresis and mass spectrometry. Of these, 43 proteins were conserved between the two strains, whereas 4 and 16 strain-specific proteins were identified only in E. coli BL21(DE3) and MG1655, respectively. Additionally, 24 proteins showed more than 2-fold differences in intensities between the B and K-12 strains. The reference envelope proteome maps showed that E. coli envelope mainly contained channel proteins and lipoproteins. Interesting proteomic observations between the two strains were as follows: (i) B produced more OmpF porin with a larger pore size than K-12, indicating an increase in the membrane permeability; (ii) B produced higher amounts of lipoproteins, which facilitates the assembly of outer membrane ${\beta}$-barrel proteins; and (iii) motility- (FliC) and chemotaxis-related proteins (CheA and CheW) were detected only in K-12, which showed that E. coli B is restricted with regard to migration under unfavorable conditions. These differences may influence the permeability and integrity of the cell envelope, showing that E. coli B may be more susceptible than K-12 to certain stress conditions. Thus, these findings suggest that E. coli K-12 and its derivatives will be more favorable strains in certain biotechnological applications, such as cell surface display or membrane engineering studies.

Keywords

References

  1. Archer, C. T., J. F. Kim, H. Jeong, J. H. Park, C. E. Vickers, S. Y. Lee, and L. K. Nielsen. 2011. The genome sequence of E. coli W (ATCC 9637): Comparative genome analysis and an improved genome-scale reconstruction of E. coli. BMC Genomics 12: 9. https://doi.org/10.1186/1471-2164-12-9
  2. Bagos, P. G., T. D. Liakopoulos, I. C. Spyropoulos, and S. J. Hamodrakas. 2004. PRED-TMBB: A Web server for predicting the topology of ${\beta}$-barrel outer membrane proteins. Nucleic Acids Res. 32: W400-W404. https://doi.org/10.1093/nar/gkh417
  3. Borgstrom, B. 1974. Bile salts - their physiological functions in the gastrointestinal tract. Acta Med. Scand. 196: 1-10.
  4. Bos, M. P., V. Robert, and J. Tommassen. 2007. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 61: 191-214. https://doi.org/10.1146/annurev.micro.61.080706.093245
  5. Brown, J. L., T. Ross, T. A. McMeekin, and P. D. Nichols. 1997. Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int. J. Food Microbiol. 37: 163-173. https://doi.org/10.1016/S0168-1605(97)00068-8
  6. Cronan, J. E. Jr. 1968. Phospholipid alterations during growth of Escherichia coli. J. Bacteriol. 95: 2054-2061.
  7. Doerrler, W. T. and C. R. Raetz. 2005. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J. Biol. Chem. 280: 27679-27687. https://doi.org/10.1074/jbc.M504796200
  8. Gardy, J. L., M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and F. S. Brinkman. 2005. PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21: 617-623. https://doi.org/10.1093/bioinformatics/bti057
  9. Han, M. J., J. W. Lee, and S. Y. Lee. 2005. Enhanced proteome profiling by inhibiting proteolysis with small heat shock proteins. J. Proteome Res. 4: 2429-2434. https://doi.org/10.1021/pr050259m
  10. Han, M. J., H. Yun, J. W. Lee, Y. H. Lee, S. Y. Lee, J. S. Yoo, et al. 2011. Genome-wide identification of the subcellular localization of the Escherichia coli B proteome using experimental and computational methods. Proteomics 11: 1213-1227. https://doi.org/10.1002/pmic.201000191
  11. Harder, K. J., H. Nikaido, and M. Matsuhashi. 1981. Mutants of Escherichia coli that are resistant to certain ${\beta}$-lactam compounds lack the ompF porin. Antimicrob. Agents Chemother. 20: 549-552. https://doi.org/10.1128/AAC.20.4.549
  12. Hasegawa, Y., H. Yamada, and S. Mizushima. 1976. Interactions of outer membrane proteins O-8 and O-9 with peptidoglycan sacculus of Escherichia coli K-12. J. Biochem. 80: 1401-1409. https://doi.org/10.1093/oxfordjournals.jbchem.a131413
  13. Hayes, E. T., J. C. Wilks, P. Sanfilippo, E. Yohannes, D. P. Tate, B. D. Jones, et al. 2006. Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol. 6: 89. https://doi.org/10.1186/1471-2180-6-89
  14. Herrera, G., A. Martinez, M. Blanco, and J. E. O'Connor. 2002. Assessment of Escherichia coli B with enhanced permeability to fluorochromes for flow cytometric assays of bacterial cell function. Cytometry 49: 62-69. https://doi.org/10.1002/cyto.10148
  15. Ho, E. M., H. W. Chang, S. I. Kim, H. Y. Kahng, and K. H. Oh. 2004. Analysis of TNT (2,4,6-trinitrotoluene)-inducible cellular responses and stress shock proteome in Stenotrophomonas sp. OK-5. Curr. Microbiol. 49: 346-352. https://doi.org/10.1007/s00284-004-4322-7
  16. Huang, C. Z., X. M. Lin, L. N. Wu, D. F. Zhang, D. Liu, S. Y. Wang, and X. X. Peng. 2006. Systematic identification of the subproteome of Escherichia coli cell envelope reveals the interaction network of membrane proteins and membrane-associated peripheral proteins. J. Proteome Res. 5: 3268-3276. https://doi.org/10.1021/pr060257h
  17. Jeong, H., V. Barbe, C. H. Lee, D. Vallenet, D. S. Yu, S. H. Choi, et al. 2009. Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J. Mol. Biol. 394: 644-652. https://doi.org/10.1016/j.jmb.2009.09.052
  18. Jordan, K. N., L. Oxford, and C. P. O'Byrne. 1999. Survival of low-pH stress by Escherichia coli O157:H7: Correlation between alterations in the cell envelope and increased acid tolerance. Appl. Environ. Microbiol. 65: 3048-3055.
  19. Knowles, T. J., A. Scott-Tucker, M. Overduin, and I. R. Henderson. 2009. Membrane protein architects: The role of the BAM complex in outer membrane protein assembly. Nat. Rev. Microbiol. 7: 206-214. https://doi.org/10.1038/nrmicro2069
  20. Lee, J. W., S. Y. Lee, H. Song, and J. S. Yoo. 2006. The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6: 3550-3566. https://doi.org/10.1002/pmic.200500837
  21. Leverrier, P., D. Vertommen, and J. F. Collet. 2010. Contribution of proteomics toward solving the fascinating mysteries of the biogenesis of the envelope of Escherichia coli. Proteomics 10: 771-784. https://doi.org/10.1002/pmic.200900461
  22. Madan Babu, M. and K. Sankaran. 2002. DOLOP - database of bacterial lipoproteins. Bioinformatics 18: 641-643. https://doi.org/10.1093/bioinformatics/18.4.641
  23. Malinverni, J. C., J. Werner, S. Kim, J. G. Sklar, D. Kahne, R. Misra, and T. J. Silhavy. 2006. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61: 151-164. https://doi.org/10.1111/j.1365-2958.2006.05211.x
  24. Masuda, K., S. Matsuyama, and H. Tokuda. 2002. Elucidation of the function of lipoprotein-sorting signals that determine membrane localization. Proc. Natl. Acad. Sci. USA 99: 7390-7395. https://doi.org/10.1073/pnas.112085599
  25. Maurer, L. M., E. Yohannes, S. S. Bondurant, M. Radmacher, and J. L. Slonczewski. 2005. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187: 304-319. https://doi.org/10.1128/JB.187.1.304-319.2005
  26. Minamino, T., Y. Imae, F. Oosawa, Y. Kobayashi, and K. Oosawa. 2003. Effect of intracellular pH on rotational speed of bacterial flagellar motors. J. Bacteriol. 185: 1190-1194. https://doi.org/10.1128/JB.185.4.1190-1194.2003
  27. Molloy, M. P., B. R. Herbert, M. B. Slade, T. Rabilloud, A. S. Nouwens, K. L. Williams, and A. A. Gooley. 2000. Proteomic analysis of the Escherichia coli outer membrane. Eur. J. Biochem. 267: 2871-2881. https://doi.org/10.1046/j.1432-1327.2000.01296.x
  28. Nandi, B., R. K. Nandy, A. Sarkar, and A. C. Ghose. 2005. Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151: 2975-2986. https://doi.org/10.1099/mic.0.27995-0
  29. Nikaido, H. 1996. Multidrug efflux pumps of Gram-negative bacteria. J. Bacteriol. 178: 5853-5859. https://doi.org/10.1128/jb.178.20.5853-5859.1996
  30. Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67: 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  31. Nishino, K. and A. Yamaguchi. 2001. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183: 5803-5812. https://doi.org/10.1128/JB.183.20.5803-5812.2001
  32. Onufryk, C., M. L. Crouch, F. C. Fang, and C. A. Gross. 2005. Characterization of six lipoproteins in the ${\sigma}^E$ regulon. J. Bacteriol. 187: 4552-4561. https://doi.org/10.1128/JB.187.13.4552-4561.2005
  33. Pilsl, H., D. Smajs, and V. Braun. 1999. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J. Bacteriol. 181: 3578-3581.
  34. Prasadarao, N. V., A. M. Blom, B. O. Villoutreix, and L. C. Linsangan. 2002. A novel interaction of outer membrane protein A with C4b binding protein mediates serum resistance of Escherichia coli K1. J. Immunol. 169: 6352-6360. https://doi.org/10.4049/jimmunol.169.11.6352
  35. Rhodius, V. A., W. C. Suh, G. Nonaka, J. West, and C. A. Gross, 2006. Conserved and variable functions of the ${\sigma}^E$ stress response in related genomes. PLoS Biol. 4: e2. https://doi.org/10.1371/journal.pbio.0040002
  36. Schneider, D., E. Duperchy, J. Depeyrot, E. Coursange, R. Lenski, and M. Blot. 2002. Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol. 2: 18. https://doi.org/10.1186/1471-2180-2-18
  37. Sonntag, I., H. Schwarz, Y. Hirota, and U. Henning. 1978. Cell envelope and shape of Escherichia coli: Multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J. Bacteriol. 136: 280-285.
  38. Stancik, L. M., D. M. Stancik, B. Schmidt, D. M. Barnhart, Y. N. Yoncheva, and J. L. Slonczewski. 2002. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184: 4246-4258. https://doi.org/10.1128/JB.184.15.4246-4258.2002
  39. Stenberg, F., P. Chovanec, S. L. Maslen, C. V. Robinson, L. L. Ilag, G. von Heijne, and D. O. Daley. 2005. Protein complexes of the Escherichia coli cell envelope. J. Biol. Chem. 280: 34409-34419. https://doi.org/10.1074/jbc.M506479200
  40. Studier, F. W., P. Daegelen, R. E. Lenski, S. Maslov, and J. F. Kim. 2009. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J. Mol. Biol. 394: 653-680. https://doi.org/10.1016/j.jmb.2009.09.021
  41. Sugawara, E. and H. Nikaido. 1992. Pore-forming activity of OmpA protein of Escherichia coli. J. Biol. Chem. 267: 2507-2511.
  42. Sulavik, M. C., C. Houseweart, C. Cramer, N. Jiwani, N. Murgolo, J. Greene, et al. 2001. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45: 1126-1136. https://doi.org/10.1128/AAC.45.4.1126-1136.2001
  43. Tokuda, H. and S. Matsuyama. 2004. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta 1694: IN1-9. https://doi.org/10.1016/j.bbamcr.2004.07.002
  44. van Beilen, J. B., S. Panke, S. Lucchini, A. G. Franchini, M. Rothlisberger, and B. Witholt. 2001. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: Evolution and regulation of the alk genes. Microbiology 147: 1621-1630. https://doi.org/10.1099/00221287-147-6-1621
  45. Walsh, N. P., B. M. Alba, B. Bose, C. A. Gross, and R. T. Sauer. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113: 61-71. https://doi.org/10.1016/S0092-8674(03)00203-4
  46. Wang, Y. 2002. The function of OmpA in Escherichia coli. Biochem. Biophys. Res. Commun. 292: 396-401. https://doi.org/10.1006/bbrc.2002.6657
  47. Wu, H. C. 1996. Biosynthesis of lipoproteins in Escherichia coli and Salmonella, pp. 262-282. In F. C. Neidhardt, R. Curtiss III, J. L.Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (eds.). Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology, 2nd Ed. ASM Press, Washington, DC.
  48. Wu, T., J. Malinverni, N. Ruiz, S. Kim, T. J. Silhavy, and D. Kahne. 2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121: 235-245. https://doi.org/10.1016/j.cell.2005.02.015
  49. Xia, X. X., M. J. Han, S. Y. Lee, and J. S. Yoo. 2008. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8: 2089-2103. https://doi.org/10.1002/pmic.200700826
  50. Xu, C., H. Ren, S. Wang, and X. Peng. 2004. Proteomic analysis of salt-sensitive outer membrane proteins of Vibrio parahaemolyticus. Res. Microbiol. 155: 835-842. https://doi.org/10.1016/j.resmic.2004.07.001
  51. Xu, C., S. Wang, H. Ren, X. Lin, L. Wu, and X. Peng. 2005. Proteomic analysis on the expression of outer membrane proteins of Vibrio alginolyticus at different sodium concentrations. Proteomics 5: 3142-3152. https://doi.org/10.1002/pmic.200401128
  52. Zhang, Y. M. and C. O. Rock. 2008. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6: 222-233. https://doi.org/10.1038/nrmicro1839

Cited by

  1. Proteomics Evidence for the Activity of the Putative Antibacterial Plant Alkaloid (-)-Roemerine: Mainstreaming Omics-Guided Drug Discovery vol.19, pp.8, 2012, https://doi.org/10.1089/omi.2015.0056
  2. Regulation of acetate metabolism in Escherichia coli BL21 by protein Nε-lysine acetylation vol.99, pp.8, 2015, https://doi.org/10.1007/s00253-014-6280-8
  3. Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production vol.178, pp.6, 2012, https://doi.org/10.1007/s12010-015-1942-2
  4. An analysis of surface proteomics results reveals novel candidates for intracellular/surface moonlighting proteins in bacteria vol.12, pp.5, 2012, https://doi.org/10.1039/c5mb00550g
  5. Klebsazolicin inhibits 70S ribosome by obstruction of the peptide exit tunnel vol.13, pp.10, 2012, https://doi.org/10.1038/nchembio.2462
  6. Comprehensive Analysis of Proteomic Differences between Escherichia coli K-12 and B Strains Using Multiplexed Isobaric Tandem Mass Tag (TMT) Labeling vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1708.08024
  7. Molecular analysis of the low-temperature Escherichia coli phage vB_EcoS_NBD2 vol.163, pp.1, 2018, https://doi.org/10.1007/s00705-017-3589-5
  8. Intracellular/surface moonlighting proteins that aid in the attachment of gut microbiota to the host vol.5, pp.1, 2012, https://doi.org/10.3934/microbiol.2019.1.77
  9. Development of a novel bacterial surface display system using truncated OmpT as an anchoring motif vol.41, pp.6, 2012, https://doi.org/10.1007/s10529-019-02676-4
  10. Novel Bacterial Surface Display System Based on the Escherichia coli Protein MipA vol.30, pp.7, 2012, https://doi.org/10.4014/jmb.2001.01053