• Title/Summary/Keyword: Proteolytic Enzymes

Search Result 240, Processing Time 0.028 seconds

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

The Effect of Synthetic Antioxidants on the proteolytic Enzymes-The Effect of Synthetic Antioxidants on the Activity of the Pepsin and Synthesis of Octapeptide as a Substrate- (합성 항산화제가 단백질 분해효소에 미치는 영향-Pepsin의 활성에 미치는 합성 항산화제의 영향 및 기질 Octapeptide의 합성-)

  • Kim, Sang-Ock
    • Journal of Nutrition and Health
    • /
    • v.14 no.3
    • /
    • pp.124-128
    • /
    • 1981
  • This study was carried out to understand the activity of pepsin, the proteolytic enzyme, to octapeptide (angiotensin II) in the presence of various synthetic antioxidants as food additives. 1) Dibutyl hydroxy toluene, butyl hydroxyanisole and ethyl protocathechuate did not influence the inhibitory activity of pepsin an the octapeptide as a substrate, but sodium-L-ascorbate inhibited pepsin activity at above 100ppm. However sodium L-ascorbate was completely removed after 30 minutes. 2) Pepsin brought about a quick break up the octapeptide, Asp-Arg-Val-Tyr-Ile-His-Gly-Phe, by splitting the Gly-Phe and Val-Tyr bond. 3) The melting point of synthetized octapeptide was $209-212^{\circ}C$, chemical formula and molecula weight were $C_{43}H_{65}N_{13}O_{12}{\cdot}CH_3COOH{\cdot}H_2O$ and 956.05, respectively. 4) The amino acid mole ratio of synthetized octapeptide by acid hydrolysis were Asp:0.98, Arg: 1.02, Val: 1.00. Tyr: 0.95, Ile: 1.00, His: 1.03, Gly: 0.96, Phe: 1.00.

  • PDF

Optimization of Proteolytic Enzyme Treatment for the Production of Spirulina Extract (단백질 분해 효소를 이용한 스피루리나 추출물 제조 공정 최적화)

  • In, Man-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.550-555
    • /
    • 2008
  • An efficient production method of spirulina extract was developed by enzymatic treatment using proteolytic enzymes. The suitable dosage of Tunicase, a cell lytic enzyme, was used to be 2.0% (w/w). To maximize solid recovery and spirulina extraction (SE) index, which indicates nucleic acid-related substances content, the dosage of Alcalase, commercially available pretense, was found to be 1.0% (w/w). By simultaneous treatments using optimal dosages of Tunicase and Alcalase, the highest SE index and solid recovery were obtained. The SE index and solid recovery of simultaneous treatments were notably enhanced by 100% ($11.4%\;{\rightarrow}\;22.8%$) and 56% ($45.2%\;{\rightarrow}\;70.7%$), respectively, than those of the non-treated extracts.

Antioxidant and ACE Inhibitory Activities of Soybean Hydrolysates: Effect of Enzyme and Degree of Hydrolysis

  • Lee, Ji-Soo;Yoo, Mi-Ae;Koo, Seung-Hyun;Baek, Hyung-Hee;Lee, Hyeon-Gyu
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.873-877
    • /
    • 2008
  • Native soy protein isolate (SPI) was hydrolyzed with 4 different proteolytic enzymes, including bromelain, papain, Neutrase, and Flavourzyme. SPI hydrolysates with the degree of hydrolysis (DH) in range of 6 to 15% were prepared by each enzyme. The angiotensin 1 converting enzyme (ACE) inhibitory and the antioxidant activities of the SPI hydrolysates, such as superoxide dismutase-like activity and inhibition of the linoleic acid autoxidation, were evaluated. Overall, as the DH increased, all evaluated bioactivities of the SPI hydrolysates significantly increased. The significantly highest ACE inhibitory and antioxidant activities were found in hydrolysates made with papain and bromelain, respectively. SPI hydrolysates by Flavourzyme showed the significantly lowest activity in all tested bioactivities. The results suggested that ACE inhibitory and antioxidant activities of SPI hydrolysates were determined by the DH and by the enzyme used.

Methods for improving meat protein digestibility in older adults

  • Seung Yun Lee;Ji Hyeop Kang;Da Young Lee;Jae Won Jeong;Jae Hyeon Kim;Sung Sil Moon;Sun Jin Hur
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.32-56
    • /
    • 2023
  • This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.

ACE-Inhibitory Properties of Proteolytic Hydrolysates from Giant Jellyfish Nemopilema nomurai

  • Yoon, Ho-Dong;Kim, Yeon-Kye;Lim, Chi-Won;Yeun, So-Mi;Lee, Moon-Hee;Moon, Ho-Sung;Yoon, Na-Young;Park, Hee-Yeon;Lee, Doo-Seog
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.174-178
    • /
    • 2011
  • This study aimed to determine the degree of hydrolysis and angiotensin-I-converting enzyme (ACE)-inhibitory activity of Giant Jellyfish Nemopilema nomurai (jellyfish) hydrolysates. The degree of hydrolysis using six proteolytic enzymes (Alcalase, Flavozyme, Neutrase, papain, Protamex, and trypsin) ranged from 13.1-36.8% and the inhibitory activities from 20.46-79.58%. Using papain hydrolysate, we newly isolated and characterized ACE-inhibitory peptides with a molecular weight of 3,000-5,000 Da that originated from jellyfish collagen. The purified peptide (FII-b) was predicted to be produced from an alpha-2 fragment of the type IV collagen of jellyfish. The N-terminal sequence of FII-b was Asp-Pro-Gly-Leu-Glu-Gly-Ala-His-Gly- and showed 87% identity to the collagen type IV alpha-2 fragment of Rattus norvegicus and a predicted protein from Nematostella vectensis, indicating that the ACE-inhibitory peptide originated from the collagen hydrolysate and had an $IC_{50}$ value of 3.8 ${\mu}g$/mL. The primary structure of the fragment is now being studied; this peptide represents an interesting new type of ACE inhibitor and will provide knowledge of the potential applications of jellyfish components as therapies for hypertension.

Identification and Characterization of Myxobacteria from Korean Soil (국내토양에서 분리한 점액세균의 동정및 특성)

  • 김재헌;손승렬
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.239-244
    • /
    • 2001
  • We isolated a Myxobacteria strain from a soil sample obtained from Mt. Daedoon located in Choongnam, Korea. This strain, ARJ, secreted slime while swarmed on the surface of CT medium. It produced greenish yellow pigment in liquid or solid media, and the swarming edge showed green florescence under U. V. at 366 nm. It formed fruiting bodies when nutrient was exhausted, which is one of the most imkportant characteristics of Myxobacteria. The fruiting bodies did not have a stalk and consisted of naked myxospores when examined under the scanning electron microscope. These traits lead us to believe that this strain is very close to Myxococcus virescens. It showed antimicrobial activity, especially against Gram positive bacteria. Culture filtrate showed the activity but this was not due to protein. The culture filtrate also had proteolytic activity in which at least two enzymes are involved.

  • PDF

Crystal structure of CodW in Bacillus Subtilis - the first N-terminal serine pretense

  • Park, Seong-Hwan;Park, Hyun-Ho;Lim, Young-Jun;Kang, Min-Suk;Lim, Byung-Kook;Seong, Ihn-Sik;Jimin Wang;Chung, Chin-Ha;Eom, Soo-Hyun
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.25-25
    • /
    • 2002
  • CodWX, encoded by the cod operon in Bacillus subtilis, is a member of the ATP-dependent protease complex family, and is homologous to the eukaryotic 26S proteasome. It consists of two multimeric complexes: two hexameric ATPase caps of CodX and a protease chamber consisting of CodW dodecamer. Prior structural studies have shown that the N-terminal threonine residue is solely functional as a proteolytic nucleophile in ATP-dependent proteases such as HslV and certain β-type subunits of 20S proteasome, which have a primary sequence similarity of -50% and -20% with CodW respectively. Here we present a 3.0 Å resolution crystal structure of CodW, which is the first N-terminal serine protease among the known proteolytic enzymes. In spite of the same fold and the conserved contacts between subunits with HslV in E. coli and H. influenza, this structure shows the five additional residues extending from conserved Thr1 among the other ATP-dependent pretense and extraordinary basic proteolytic chamber.

  • PDF

Preparation and Keeping Quality of Proteolytic Enzymes from Seafood rocessing Wastes (어류가공 부산물로부터 단백질분해 효소제의 조제 및 보관안정성)

  • KIM Jin Soo;HEU Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.259-268
    • /
    • 2004
  • Keeping qualities of crude proteases (CP) and fractionated proteases (FP) sedimenting with $30\~80{\%}$ ammonium sulfate from four kinds of fish viscera as a seafood processing waste were examined. Azocaseinolytic activlties (pH 6 and 8) of CP from anchovy (Engraulis japonica), mackerel (Scomber japonicus), bastard flatfish (Pararlichthys olivaceus) and red sea bream (Chysorphys major) were stable without activity loss at $4^{\circ}C$ for 7 months. Activities of NaCP (CP containing $30{\%}$ sodium chloride) on azocasein were approximately $30{\%}$ lower than those of CP. FP activities Increased 3.4-16.1 folds compared to those of CP and NaCP Powdered crude protease (PCP) and fractionated and powdered protease (FPP) containing various sugars (lactose, sucrose, glucose and dextrin) were prepared by freeze drying. Activities of PCP and FPP containing sucrose were higher and more stable than those of PCP and FPP containing other sugars at $30^{\circ}C$ for whole keeping periods. PCP and FPP from mackerel viscera showed the highest proteolytic activity among four kind of fish vlsceras. The Optimum conditions and stabilities of FPP from mackerel viscera were pH 9 and $50^{\circ}C$, and pH 5-10 and $20-45^{\circ}C$, respectively. The results of this study suggest that FPP from seafood processing waste may be used as processing aids.

Different Effect of Sodium Chloride Replacement with Calcium Chloride on Proteolytic Enzyme Activities and Quality Characteristics of Spent Hen Samgyetang

  • Barido, Farouq Heidar;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.869-882
    • /
    • 2021
  • Sodium chloride (NaCl) replacement with calcium chloride (CaCl2) effect on protein solubility, proteolytic enzyme and quality characteristics of a chicken soup prepared from spent hen (SH) chicken were investigated. By means of immerse marination prior to cooking, a total of 60 skinless SH breast meat were randomly allocated into ten groups admitted to treatments with marinade solution containing sodium tripolyphosphate (STPP) and reduced percentage of NaCl with CaCl2 at 0%, 25%, 50%, 75%, and 100% at 4±2℃ for 20 h. STPP was adjusted to 0.5% for all treatments and NaCl replacement at 0% was used as control. The different methods, particularly boiling at 100℃ and retorting at 121℃, 1.5 kgf/cm2 for 60 minutes, were applied following marination. An upregulation of cathepsin-B and caspase-3 enzymes were a consequences from a higher percentage of CaCl2 within meat environment. Accordingly, modified the protein solubility in particular the myofibrillar and total protein solubility. In addition, a significant increase in water holding capacity (WHC), pH value, myofibril fragmentation index (MFI), and moisture content was obtained due to salt replacement (p<0.05). Limited effect was observed for shear force value, collagen content and cooking yield. Eventually, this study implied that although protelytic enzyme and protein solubility was upregulated by the replacement of NaCl with CaCl2 at >75%, extensive effect on texture properties was not observed. Therefore, NaCl replacement at 75% could be a promising strategy for quality improvement of SH chicken soup.