Crystal structure of CodW in *Bacillus Subtilis* - the first N-terminal serine protease Seong Hwan Rho^a, Hyun Ho Park^a, Young Jun Lim^a, Min Suk Kang^b, Byung Kook Lim^b, Ihn Sik Seong^b, Jimin Wang^c, Chin Ha Chung^b and Soo Hyun Eom^{a*} ^aDepartment of Life Science, Kwangju Institute of Science & Technology Kwangju 500-712, Korea ^bNRL of Protein Biochemistry, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea ^cDepartment of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520 CodWX, encoded by the *cod* operon in *Bacillus subtilis*, is a member of the ATP-dependent protease complex family, and is homologous to the eukaryotic 26S proteasome. It consists of two multimeric complexes: two hexameric ATPase caps of CodX and a protease chamber consisting of CodW dodecamer. Prior structural studies have shown that the N-terminal threonine residue is solely functional as a proteolytic nucleophile in ATP-dependent proteases such as HslV and certain β-type subunits of 20S proteasome, which have a primary sequence similarity of -50% and -20% with CodW respectively. Here we present a 3.0 Å resolution crystal structure of CodW, which is the first N-terminal serine protease among the known proteolytic enzymes. In spite of the same fold and the conserved contacts between subunits with HslV in *E. coli* and *H. influenza*, this structure shows the five additional residues extending from conserved Thr1 among the other ATP-dependent protease and extraordinary basic proteolytic chamber.