• Title/Summary/Keyword: Protein-protein interactions

Search Result 785, Processing Time 0.031 seconds

Recent Development of Protein Microarray and Proteogen Platform

  • Han, Moon-Hi;Kang, In-Cheol;Lee, Yoon-Suk;Cho, Yong-Wan;Lee, Eun-Kyoung
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.47-47
    • /
    • 2005
  • There are many different surface technologies currently applied for preparation of protein chips. However, it requires innovative surface chemistry for capture proteins to be immobilized on chip surface keeping their conformation and activity intact and their orientation right, while they bind tightly and densely in a given array spot. Proteogen has developed 'ProteoChip BP' coated with novel proprietary linker molecules $(ProLinker^{TM})$ for efficient and robust immobilizations of capture proteins by improving surface properties of molecular captures. It was demonstrated that $ProLinker^{TM}$ gave the best surface performance in preparation of protein microarray chip base plates among others currently available on the market. In particular, the $ProLinker^{TM}-based$ surface chemistry has demonstrated to provide excellent performance in preparation of 'Antibody Chip' for analysis of biomarkers as well as proteome expression profiles. The linker molecule has also shown to be well applicable for development of biosensors and micro-beads as well as protein microarray and nano-array. ProteoChip BP can be used either for preparation of high-density array by using a microarrayer or for preparation of 'Well-on-a-Chip' with low density array, which is better applicable for quantitative analysis of biomarkers or protein-protein interactions. The biomarker assay can be performed either by direct or sandwich methods of fluorescence immunoassay. Application of ProteoChip BP has been well demonstrated by the extensive studies of 1) tumor-marker assays, 2) new drug screening by using 'Integrin Chip' and 3) protein expression profile analysis. Some of experimental results will be presented.

  • PDF

Production of Protein Hydrolyzate, that can be used as Food Additives, from Okara (산업폐기물인 비지로부터 식품첨가물로 이용할 수 있는 단백질 가수분해물의 생산)

  • Woo, Eun-Yeol;Kim, Min-Jung;Shin, Weon-Sun;Lee, Kyung-Ae;Kim, Kang-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.769-773
    • /
    • 2001
  • Protein content of okara and soybean were found to be 37.3% and 42.5%, respectively by micro-Kjeldahl analysis. Solubility of okara protein in phosphate buffer (pH 8) was 10% versus soy protein of 68.4%. Insolubilization of okara protein was mostly due to disulfide bonding between cysteine residues caused by excessive heat treatment during soymilk processing: hydrophobic interactions and hydrogen bondings were involved to lesser extent. Optimum extraction temperature and time were $60^{\circ}C$ and 40 min. Typical solubility profile of soy protein disappeared for okara protein though minimum solubility of the protein was around pH 3.0. Treating okara with protease was effective in solubilizing okara protein and solubility increased to 19.2%. Optimum reaction temperature and time were $80^{\circ}C$ and 50 min, respectively. Cell wall degrading enzyme did not increase solubility of the protein, however. Through enzymatic reaction okara protein could be effectively solubilized for uses as food ingredient.

  • PDF

Characterization of the molecular and biological properties between the equine herpesvirus type 1 immediate-early protein and the general transcription factor human TFIIB

  • Jang Hyung-Kwan
    • Korean Journal of Veterinary Service
    • /
    • v.27 no.4
    • /
    • pp.355-369
    • /
    • 2004
  • The equine herpesvirus type 1 (EHV-1) immediate-early (IE) protein is a potent transactivator responsible for the activation of both early and late genes during the course of infection and is comprised of discrete functional domains that mediate its many functions. Interaction between trans activators such as the IE protein and various components of the RNA polymerase II transcription initiation machinery has been demonstrated to be critical for transactivation. In the present report, it is addressed the hypothesis that the IE protein interacts with various components of transcription machinery to mediate transactivation of target viral genes. In these studies, it is demonstrated that in vitro transcribed and translated IE protein interacts with TFIIB-agarose conjugate but not with TFIID-agarose conjugate. Additional immunoprecipitation studies using nuclear extracts derived from EHV-1 infected RK-13 cells confirmed that the IE protein interacts strongly with TFIIB, but fails to interact with TFIID. IR2, a truncated form of the IE protein lacking the potent transactivation domain and involved in the down-regulation of the IE gene, also interacted with TFIIB but not with TFIID. Studies were also performed to ascertain if particular TBP-associated factors (TAFs) could mediate IE or IR2 binding to TFIID. In vitro transcribed and translated TAF250 added to nuclear extracts generated from EHV-1 infected cells also failed to mediate an interaction between the IE protein or the IR2 protein and TFIID. This study demonstrated that the IE protein mediates transactivation of target viral genes by a mechanism that involves TFIIB. This is in contrast to mechanisms that have been proposed for both the herpes simplex virus ICP4 and VP16 protein which have been proposed to transactivate viral genes through interactions involving both TFIIB and TFIID. This study also intimates that IR2 mediate its repressive effects during the course of EHV-1 infection by a mechanism that involves sequestration of various transcription factors.

Molecular and Biochemical Studies on the DNA Replication of Bacteriophage T7: Functional Analysis of Amino-terminal Region of Gene 2.5 Protein

  • Kim, Young-Tae;Lee, Sung-Gu;Kim, Hak-Jun
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.484-489
    • /
    • 1995
  • The product of bacteriophage T7 gene 2.5 is a single-stranded DNA binding protein and plays an important role in T7 DNA replication, recombination, and repair. Genetic analysis of T7 phage defective in gene 2.5 shows that the gene 2.5 protein is essential for T7 DNA replication and growth (Kim and Richardson, 1993). The C-terminal truncated gene 2.5 protein ($GP2.5-{\Delta}21C$) cannot substitute for wild-type gene 2.5 protein in vivo; suggesting that the C-terminal domain of gene 2.5 protein is essential for protein-protein interactions (Kim and Richardson, 1994; J. Biol. Chem. 269, 5070-5078). Truncated gene 2.5 proteins lacking 19 residues ($GP2.5-{\Delta}19N$) and 39 residues ($GP2.5-{\Delta}39N$) from the amino-terminal domain were constructed by in vitro mutagenesis. $GP2.5-{\Delta}19N$ can support the growth of T7 phage lacking gene 2.5 while $GP2.5-{\Delta}39N$ cannot substitute for wild-type gene 2.5 protein in vivo; however, its ability to bind to single-stranded DNA is not affected. These results clearly demonstrate that the 20~39 amino-terminal region of gene 2.5 protein is required for T7 growth in vivo but may not be involved in DNA binding activity.

  • PDF

Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2)

  • Ferdous, Nadim;Reza, Mahjerin Nasrin;Emon, Md. Tabassum Hossain;Islam, Md. Shariful;Mohiuddin, A.K.M.;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • v.18 no.3
    • /
    • pp.28.1-28.9
    • /
    • 2020
  • Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S. coelicolor. Several bioinformatics tools were employed to predict the structure and function of this protein. Sequence similarity was searched through the available bioinformatics databases to find out the homologous protein. The secondary and tertiary structure were predicted and further validated with quality assessment tools. Furthermore, the active site and the interacting proteins were also explored with the utilization of CASTp and STRING server. The hypothetical protein showed the important biological activity having with two functional domain including POD-like_MBL-fold and rhodanese homology domain. The functional annotation exposed that the selected hypothetical protein could show the hydrolase activity. Furthermore, protein-protein interactions of selected hypothetical protein revealed several functional partners those have the significant role for the bacterial survival. At last, the current study depicts that the annotated hypothetical protein is linked with hydrolase activity which might be of great interest to the further research in bacterial genetics.

Network Analyses of Gene Expression following Fascin Knockdown in Esophageal Squamous Cell Carcinoma Cells

  • Du, Ze-Peng;Wu, Bing-Li;Xie, Jian-Jun;Lin, Xuan-Hao;Qiu, Xiao-Yang;Zhan, Xiao-Fen;Wang, Shao-Hong;Shen, Jin-Hui;Li, En-Min;Xu, Li-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5445-5451
    • /
    • 2015
  • Fascin-1 (FSCN1) is an actin-bundling protein that induces cell membrane protrusions, increases cell motility, and is overexpressed in various human epithelial cancers, including esophageal squamous cell carcinoma (ESCC). We analyzed various protein-protein interactions (PPI) of differentially-expressed genes (DEGs), in fascin knockdown ESCC cells, to explore the role of fascin overexpression. The node-degree distributions indicated these PPI sub-networks to be characterized as scale-free. Subcellular localization analysis revealed DEGs to interact with other proteins directly or indirectly, distributed in multiple layers of extracellular membrane-cytoskeleton/ cytoplasm-nucleus. The functional annotation map revealed hundreds of significant gene ontology (GO) terms, especially those associated with cytoskeleton organization of FSCN1. The Random Walk with Restart algorithm was applied to identify the prioritizations of these DEGs when considering their relationship with FSCN1. These analyses based on PPI network have greatly expanded our comprehension of the mRNA expression profile following fascin knockdown to future examine the roles and mechanisms of fascin action.

Direct Regulation of TLR5 Expression by Caveolin-1

  • Lim, Jae Sung;Nguyen, Kim Cuc Thi;Han, Jung Min;Jang, Ik-Soon;Fabian, Claire;Cho, Kyung A
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1111-1117
    • /
    • 2015
  • Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life.

Comparative Analyses of Tomato yellow leaf curl virus C4 Protein-Interacting Host Proteins in Healthy and Infected Tomato Tissues

  • Kim, Namgyu;Kim, Jinnyun;Bang, Bongjun;Kim, Inyoung;Lee, Hyun-Hee;Park, Jungwook;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.32 no.5
    • /
    • pp.377-387
    • /
    • 2016
  • Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, is one of the most important viruses of cultivated tomatoes worldwide, mainly causing yellowing and curling of leaves with stunting in plants. TYLCV causes severe problems in sub-tropical and tropical countries, as well as in Korea. However, the mechanism of TYLCV infection remains unclear, although the function of each viral component has been identified. TYLCV C4 codes for a small protein involved in various cellular functions, including symptom determination, gene silencing, viral movement, and induction of the plant defense response. In this study, through yeast-two hybrid screenings, we identified TYLCV C4-interacting host proteins from both healthy and symptom-exhibiting tomato tissues, to determine the role of TYLCV C4 proteins in the infection processes. Comparative analyses of 28 proteins from healthy tissues and 36 from infected tissues showing interactions with TYLCV C4 indicated that TYLCV C4 mainly interacts with host proteins involved in translation, ubiquitination, and plant defense, and most interacting proteins differed between the two tissues but belong to similar molecular functional categories. Four proteins-two ribosomal proteins, S-adenosyl-L-homocysteine hydrolase, and 14-3-3 family protein-were detected in both tissues. Furthermore, the identified proteins in symptom-exhibiting tissues showed greater involvement in plant defenses. Some are key regulators, such as receptor-like kinases and pathogenesis-related proteins, of plant defenses. Thus, TYLCV C4 may contribute to the suppression of host defense during TYLCV infection and be involved in ubiquitination for viral infection.

USING AN ABSTRACTION OF AMINO ACID TYPES TO IMPROVE THE QUALITY OF STATISTICAL POTENTIALS FOR PROTEIN STRUCTURE PREDICTION

  • Lee, Jin-Woo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.191-199
    • /
    • 2011
  • In this paper, we adopt a position specific scoring matrix as an abstraction of amino acid type to derive two new statistical potentials for protein structure prediction, and investigated its effect on the quality of the potentials compared to that derived using residue specific amino acid identity. For stringent test of the potential quality, we carried out folding simulations of 91 residue A chain of protein 2gpi, and found unexpectedly that the abstract amino acid type improved the quality of the one-body type statistical potential, but not for the two-body type statistical potential which describes long range interactions. This observation could be effectively used when one develops more accurate potentials for structure prediction, which are usually involved in merging various one-body and many-body potentials.

TM4SF5-mediated protein-protein networks and tumorigenic roles

  • Lee, Jung Weon
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.483-487
    • /
    • 2014
  • Transmembrane 4 L six family member 5 (TM4SF5), as a membrane glycoprotein with 4 transmembrane domains, is similar to the tetraspanins in terms of membrane topology and plays important roles in tumorigenesis and tumor metastasis. Especially, TM4SF5 appears to form a massive protein-protein complex consisting of diverse membrane proteins and/or receptors in addition to cytosolic signaling molecules to regulate their signaling activities during the pathological processes. TM4SF5 is shown to interact with integrins ${\alpha}2$, ${\alpha}5$, and ${\beta}1$, EGFR, IL6R, CD151, focal adhesion kinase (FAK), and c-Src. This review focuses on the significance of the interactions with regards to TM4SF5-positive tumorigenesis and metastasis.