• Title/Summary/Keyword: Protein prediction

Search Result 473, Processing Time 0.028 seconds

Prediction Accuracy Evaluation of Domain and Domain Combination Based Prediction Methods for Protein-Protein Interaction

  • Han, Dong-Soo;Jang, Woo-Hyuk
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.128-133
    • /
    • 2006
  • This paper compares domain combination based protein-protein interaction prediction method with domain based protein-protein interaction method. The prediction accuracy and reliability of the methods are compared using the same prediction technique and interaction data. According to the comparison, domain combination based prediction method has showed superior prediction accuracy to domain based prediction method for protein pairs with fully overlapped domains with protein pairs in learning sets. When we consider that domain combination based method has the effects of assigning a weight to each domain interaction, it implies that we can improve the prediction accuracies of currently available domain or domain combination based protein interaction prediction methods further by developing more advanced weight assignment techniques. Several significant facts revealed from the comparative studies are also described in this paper.

  • PDF

Development and Application of Protein-Protein interaction Prediction System, PreDIN (Prediction-oriented Database of Interaction Network)

  • 서정근
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2002.06a
    • /
    • pp.5-23
    • /
    • 2002
  • Motivation: Protein-protein interaction plays a critical role in the biological processes. The identification of interacting proteins by bioinformatical methods can provide new lead In the functional studies of uncharacterized proteins without performing extensive experiments. Results: Protein-protein interactions are predicted by a computational algorithm based on the weighted scoring system for domain interactions between interacting protein pairs. Here we propose potential interaction domain (PID) pairs can be extracted from a data set of experimentally identified interacting protein pairs. where one protein contains a domain and its interacting protein contains the other. Every combinations of PID are summarized in a matrix table termed the PID matrix, and this matrix has proposed to be used for prediction of interactions. The database of interacting proteins (DIP) has used as a source of interacting protein pairs and InterPro, an integrated database of protein families, domains and functional sites, has used for defining domains in interacting pairs. A statistical scoring system. named "PID matrix score" has designed and applied as a measure of interaction probability between domains. Cross-validation has been performed with subsets of DIP data to evaluate the prediction accuracy of PID matrix. The prediction system gives about 50% of sensitivity and 98% of specificity, Based on the PID matrix, we develop a system providing several interaction information-finding services in the Internet. The system, named PreDIN (Prediction-oriented Database of Interaction Network) provides interacting domain finding services and interacting protein finding services. It is demonstrated that mapping of the genome-wide interaction network can be achieved by using the PreDIN system. This system can be also used as a new tool for functional prediction of unknown proteins.

  • PDF

A Domain Combination Based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측기법)

  • Han, Dong-Soo;Seo, Jung-Min;Kim, Hong-Soog;Jang, Woo-Hyuk
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.7-16
    • /
    • 2003
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance pro-bability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated fur the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as foaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.

  • PDF

Fucntional Prediction Method for Proteins by using Modified Chi-square Measure (보완된 카이-제곱 기법을 이용한 단백질 기능 예측 기법)

  • Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.332-336
    • /
    • 2009
  • Functional prediction of unannotated proteins is one of the most important tasks in yeast genomics. Analysis of a protein-protein interaction network leads to a better understanding of the functions of unannotated proteins. A number of researches have been performed for the functional prediction of unannotated proteins from a protein-protein interaction network. A chi-square method is one of the existing methods for the functional prediction of unannotated proteins from a protein-protein interaction network. But, the method does not consider the topology of network. In this paper, we propose a novel method that is able to predict specific molecular functions for unannotated proteins from a protein-protein interaction network. To do this, we investigated all protein interaction DBs of yeast in the public sites such as MIPS, DIP, and SGD. For the prediction of unannotated proteins, we employed a modified chi-square measure based on neighborhood counting and we assess the prediction accuracy of protein function from a protein-protein interaction network.

Protein Disorder Prediction Using Multilayer Perceptrons

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.11-15
    • /
    • 2013
  • "Protein Folding Problem" is considered to be one of the "Great Challenges of Computer Science" and prediction of disordered protein is an important part of the protein folding problem. Machine learning models can predict the disordered structure of protein based on its characteristic of "learning from examples". Among many machine learning models, we investigate the possibility of multilayer perceptron (MLP) as the predictor of protein disorder. The investigation includes a single hidden layer MLP, multi hidden layer MLP and the hierarchical structure of MLP. Also, the target node cost function which deals with imbalanced data is used as training criteria of MLPs. Based on the investigation results, we insist that MLP should have deep architectures for performance improvement of protein disorder prediction.

Minimally Complex Problem Set for an Ab initio Protein Structure Prediction Study

  • Kim RyangGug;Choi Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.414-418
    • /
    • 2004
  • A 'minimally complex problem set' for ab initio protein Structure prediction has been proposed. As well as consisting of non-redundant and crystallographically determined high-resolution protein structures, without disulphide bonds, modified residues, unusual connectivities and heteromolecules, it is more importantly a collection of protein structures. with a high probability of being the same in the crystal form as in solution. To our knowledge, this is the first attempt at this kind of dataset. Considering the lattice constraint in crystals, and the possible flexibility in solution of crystallographically determined protein structures, our dataset is thought to be the safest starting points for an ab initio protein structure prediction study.

Reviving GOR method in protein secondary structure prediction: Effective usage of evolutionary information

  • Lee, Byung-Chul;Lee, Chang-Jun;Kim, Dong-Sup
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.133-138
    • /
    • 2003
  • The prediction of protein secondary structure has been an important bioinformatics tool that is an essential component of the template-based protein tertiary structure prediction process. It has been known that the predicted secondary structure information improves both the fold recognition performance and the alignment accuracy. In this paper, we describe several novel ideas that may improve the prediction accuracy. The main idea is motivated by an observation that the protein's structural information, especially when it is combined with the evolutionary information, significantly improves the accuracy of the predicted tertiary structure. From the non-redundant set of protein structures, we derive the 'potential' parameters for the protein secondary structure prediction that contains the structural information of proteins, by following the procedure similar to the way to derive the directional information table of GOR method. Those potential parameters are combined with the frequency matrices obtained by running PSI-BLAST to construct the feature vectors that are used to train the support vector machines (SVM) to build the secondary structure classifiers. Moreover, the problem of huge model file size, which is one of the known shortcomings of SVM, is partially overcome by reducing the size of training data by filtering out the redundancy not only at the protein level but also at the feature vector level. A preliminary result measured by the average three-state prediction accuracy is encouraging.

  • PDF

Prediction of Transmembrane Protein Topology Using Position-specific Modeling of Context-dependent Structural Regions

  • Chi, Sang-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.683-693
    • /
    • 2005
  • This paper presents a new transmembrane Protein topology prediction method which is an attempt to model the topological rules governing the topogenesis of transmembrane proteins. Context-dependent structural regions of the transmembrane protein are used as basic modeling units in order to effectively represent their topogenic roles during transmembrane protein assembly. These modeling units are modeled by means of a tied-state hidden Markov model, which can express the position-specific effect of amino acids during ransmembrane protein assembly. The performance of prediction improves with these modeling approaches. In particular, marked improvement of orientation prediction shows the validity of the proposed modeling. The proposed method is available at http://bioroutine.com/TRAPTOP.

  • PDF

A Domain Combination-based Probabilistic Framework for Protein-Protein Interaction Prediction (도메인 조합 기반 단백질-단백질 상호작용 확률 예측 틀)

  • 한동수;서정민;김홍숙;장우혁
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In this paper, we propose a probabilistic framework to predict the interaction probability of proteins. The notion of domain combination and domain combination pair is newly introduced and the prediction model in the framework takes domain combination pair as a basic unit of protein interactions to overcome the limitations of the conventional domain pair based prediction systems. The framework largely consists of prediction preparation and service stages. In the prediction preparation stage, two appearance probability matrices, which hold information on appearance frequencies of domain combination pairs in the interacting and non-interacting sets of protein pairs, are constructed. Based on the appearance probability matrix, a probability equation is devised. The equation maps a protein pair to a real number in the range of 0 to 1. Two distributions of interacting and non-interacting set of protein pairs are obtained using the equation. In the prediction service stage, the interaction probability of a Protein pair is predicted using the distributions and the equation. The validity of the prediction model is evaluated for the interacting set of protein pairs in Yeast organism and artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in DIP database are used as teaming set of interacting protein pairs, very high sensitivity(86%) and specificity(56%) are achieved within our framework.