• Title/Summary/Keyword: Protein phosphatases

Search Result 72, Processing Time 0.025 seconds

Protein Phosphatase 1D (PPM1D) Structure Prediction Using Homology Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Protein phosphatase manganese dependent 1D (PPM1D) is one of the Ser/Thr protein phosphatases belongs to the PP2C family. They play an important role in cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Even though PPM1D is involved in the pathophysiology of various tumors, the three dimensional protein structure is still unknown. Hence in the present study, homology modelling of PPM1D was performed. 20 different models were modelled using single- and multiple-template based homology modelling and validated using different techniques. Best models were selected based on the validation. Three models were selected and found to have similar structures. The predicted models may be useful as a tool in studying the pathophysiological role of PPM1D.

Crystal Structure of the PTEN Tumor Suppressor: Implications for Its Phosphoinositide Phosphatase Activity and Membrane Association

  • Lee, Jie-Oh;Haijuan Yang;Nikola Pavletich
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2001.06a
    • /
    • pp.20-20
    • /
    • 2001
  • The PTEN tumor suppressor is mutated in diverse human cancers and in hereditary cancer predisposition syndromes. PTEN is a phosphatase that can act on both polypeptide and phosphoinositide substrates in vitro. The PTEN structure reveals a phosphatase domain similar to protein phosphatases but having an enlarged active site important for the accommodation of the phosphoinositide substrate.(omitted)

  • PDF

Emerging roles of PHLPP phosphatases in metabolism

  • Cha, Jong-Ho;Jeong, Yelin;Oh, Ah-Reum;Lee, Sang Bae;Hong, Soon-Sun;Kim, KyeongJin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.451-457
    • /
    • 2021
  • Over the last decades, research has focused on the role of pleckstrin homology (PH) domain leucine-rich repeat protein phosphatases (PHLPPs) in regulating cellular signaling via PI3K/Akt inhibition. The PKB/Akt signaling imbalances are associated with a variety of illnesses, including various types of cancer, inflammatory response, insulin resistance, and diabetes, demonstrating the relevance of PHLPPs in the prevention of diseases. Furthermore, identification of novel substrates of PHLPPs unveils their role as a critical mediator in various cellular processes. Recently, researchers have explored the increasing complexity of signaling networks involving PHLPPs whereby relevant information of PHLPPs in metabolic diseases was obtained. In this review, we discuss the current knowledge of PHLPPs on the well-known substrates and metabolic regulation, especially in liver, pancreatic beta cell, adipose tissue, and skeletal muscle in relation with the stated diseases. Understanding the context-dependent functions of PHLPPs can lead to a promising treatment strategy for several kinds of metabolic diseases.

EFFECT OF LOW DEGRADABLE DIETARY PROTEINS ON HEPATIC METABOLISM OF EARLY LACTATING BUFFALOES

  • Sikka, P.;Sengar, S.S.;Mudgal, V.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.643-646
    • /
    • 1992
  • Role of low degradable protein in milk production of early lactating Murrah buffaloes has been studied in relation to energy status of test animals. Replacement of conventional concentrate mixture with low degradable cotton seed cake resulted in appreciable changes in circulatory transaminases and phosphatase levels. The enzymes viz. glutamate oxaloacetate and glutamate pyruvate transaminase and alkaline phosphatases increased with feeding of said cake indicating stress on hepatic tissue. Animals seemed to overcome stress by feeding enhanced levels of same protein along with improved feed intake, body weight and milk production.

Carotenogenesis in Haematococcus lacustris: Role of Protein Tyrosine Phosphatases

  • Park, Jae-Kweon;Tran, Phuong Ngoc;Kim, Jeong-Dong;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.918-921
    • /
    • 2009
  • In the present study, we examined the inhibitory effects of protein tyrosine phosphatase (PTPase) inhibitors, including sodium orthovanadate (SOV), ammonium molybdate (AM), and iodoacetamide (IA), on cell growth, accumulation of astaxanthin, and PTPase activity in the photosynthetic algae Haematococcus lacustris. PTPase activity was assayed spectrophotometrically and was found to be inhibited 60% to 90% after treatment with the inhibitors. SOY markedly abolished PTPase activity, significantly activating the accumulation of astaxanthin. These data suggest that the accumulation of astaxanthin in H. lacustris results from the concerted actions of several PTPases.

Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe

  • Park, Jaehong;Lee, Dong-Hyun
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.181-190
    • /
    • 2020
  • Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.

Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity

  • Yang, Jin-Wei;Li, Cui;He, Xiao-Peng;Zhao, Hong;Gao, Li-Xin;Zhang, Wei;Shi, Xiao-Xin;Tang, Yun;Li, Jia;Chen, Guo-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3359-3365
    • /
    • 2010
  • The incorporation of microwave irradiation with the prevalent "click chemistry" is currently of considerable synthetic interest. We describe here the introduction of such laboratorial shortcut into carbohydrate-based drug discovery, resulting in the rapid formation of a series of triazole-linked salicylic $\beta$-D-O-glycosides with biological activities. All "clicked" products were achieved in excellent yields ($\approx$ 90%) within only a quarter. In addition, based on the structural characteristics of the afforded glycomimetics, their inhibitory activities were evaluated toward protein tyrosine phosphatases 1B (PTP1B) and a panel of homologous protein tyrosine phosphatases (PTPs). Docking simulation was also conducted to plausibly propose binding modes of this glycosyl salicylate series with the enzymatic target.

Purification and Characterization of Protein Phosphatase 2C from Rat Liver

  • Oh, Joung-Sook;Hwang, In-Seong;Choi, Myung-Un
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.222-228
    • /
    • 1997
  • Protein phosphatase 2C (PP2C) is one of the four major serine/threonine phosphatases which is dependent on $Mg^{2+}$ for its activity. PP2C was purified from rat liver cytosol and its characteristics were investigated. The substrate employed for routine assay was $[^{32}P]casein$ phosphorylated by PKA. The purification process involved DEAE chromatography, ammonium sulfate fractionation, phenyl sepharose chromatography, sephacryl 5-200 gel filtration, and histone agarose chromatography. The SDS-PAGE of PP2C showed one major single protein band at a position corresponding to a molecular mass of 43 kd and the purification fold was 637. The enzyme showed a pH optimum of 8 and $K_M$ value was $1.9\;{\mu}M$. However, when the substrate was changed to $[^{32}P]histone$, the pH optimum was shifted to 7 and $K_M$ value was $2.3\;{\mu}M.\;Mg^{2+}$ was essential to the enzyme activity and okadaic acid did not exert any inhibitory effect on the enzyme. To examine residue in the active site of PP2C effects of some protein-modifying reagents were tested.

  • PDF

High-Throughput Screening for Novel Inhibitors of Protein-Tyrosine Phosphatase-1B

  • Lee, In-Ki;Son, Mi-Won;Jung, Mi-Young;Shin, Chang-Yell;Kim, Dong-Sung;Kim, Soon-Hoe;Yoo, Moo-Hi;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.243.2-244
    • /
    • 2002
  • Protein-tyrosine phosphatases (PTPs) constitute a family of receptor-like and cytoplasmic enzymes. which catalyze the dephosphorylation of phosphotyrosine residues in a variety of receptors and signaling molecules. Thirty subtypes of PTPs have been identified in human genomes. Among PTPs, PTP1 B has been suggested as a negative regulator of insulin signaling. Overexpression of this enzyme has been known as a cause of obesity and type II diabetes, so it is a target for drug discovery. (omitted)

  • PDF