• Title/Summary/Keyword: Protein phosphatase

Search Result 901, Processing Time 0.025 seconds

Transfer and Expression of SEAP (secreted alkaline phosphatase) or GFP (green fluorescence protein) Gene in Mammalian Cells and Mouse Embryos by Using Retrovirus Vector System (포유동물 세포와 생쥐 배에서 Retrovirus Vector를 이용한 SEAP와 GEP 유전자의 전이 및 발현)

  • 김태완;이규승;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 1996
  • One of the biggest problems involved in transgenic animal production is lack of appropriate market genes. To overcome this problem, we tested whether the genes of SEAP (secreted alkaline phosphatase) and GFP (green fluorescence protein) on our retrovirus vectors can be applicable to the transgenic animal production. The main advantage of these marker genes over other generally mainpulation can be selected without sacrificing viability. The results obtained in this study are summarized as follows: 1. Removal of zona pellucida from the mouse zygotes did not affect embryo developments to blastocysts. 2. Co-culture of zona-free embryos with virus-producing cells for 6 hours also did not affect embryo developments to blastocysts. 3. Among 58 blastocysts developed from the zona-free zygotes co-cultured with the virus-producing cells, SEAP expression was observed from the 6 blastocysts. 4. Expression of the GFP gene was detected from the virus- producing cells but no embryo expressing the gene was counted among 50 blastocysts developed from the zona-free zygotes co-cultured with the virus-producing cells.

  • PDF

Changes in Haemolymph Proteins, Hydrolases, and Inorganic tons of Heliothis assulta Injected with Bacillus thuringiensis (Bacillus thuringiensis의 주입에 따른 담배나방의 혈림프 단백질, 가수분해효소 및 무기이온의 변화)

  • 유종명;조시형;황석연;이형철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.90-96
    • /
    • 1994
  • Changes in haemolymph proteins, hydrolases such as esterase(EST), acid phosphatase(ACP) and alkaline phosphatase(ALP) , and inorganic ion(Na+, K+ and Cl- ) contents were induced by the injection of Bacillus thuringiengis into haemocoel of the last instar larva of Heliothis assulta. Protein concentration of haemolymph was increased until 24 hrs after injection, and decreased thereafter. Among the 8 basic protein bands identified through acid - polyacrylamide gel electrophoresis(PAGE), 2 bands(bands a and b) became stronger by the bacterial infection. Activities of EST and ALP increased until 12 hrs after injection and then fell down, whereas ACP activity was decreased continuously with time after injection. Contents of inorganic ions were all increased by the bacterial injection, showing slow rate of increase in the chloride ion, but rapid in the sodium and potassium ions.

  • PDF

Effects of Sodium Butyrate on the Biosynthesis of Sphingolipids in HT29, a Human Colon Cancer Cell Line (Sodium Butyrate 처리가 대장암 세포주인 HT29 Cell의 Sphingolipid 생합성에 미치는 영향)

  • 김희숙
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • Butyrate is one of the short-chain fatty acids that are present in the colon of mammals in millimolar concentration as a result of microbial anaerobic fermentation of dietary fiber, undigested starch, and proteins. In this study, sodium butyrate was examined in HT29 cell, human colonic cancer cell line, on cell viability, alkaline phosphatase activity, PLC-${\gamma}$1 expression and complex sphingolipid biosynthesis. Treatment with butyrate showed that the decrease of cell adhesion and viability was time-dependent. Sodium butyrate also induced to increase the activity of alkaline phosphatase which is a differentiation marker enzyme and decrease the expression of PLC-${\gamma}$1. Biosynthesis of sphingomyelin and galactosylceramide by butyrate treatment were decreased so fast but ceramide was increased 680dpm/mg protein% more than untreated group on first day and then decreased fast. In addition, acid ceramidase and neutral ceramidase activity were inhibited early stage by sodium butyrate. These results suggest that sodium butyrate causes cell differentiation or cell growth arrest of HT29 cell accompanied by early increase of ceramide content and alkaline phosphatase activity and decrease of galactosylceramide content and PLC-r1 expression.

  • PDF

The Effects of Phosphate Starvation on the Activities of Acid and Alkaline Phosphatase, Fructose-1,6-bisphosphatase, Sucrose-phosphate Synthase and Nitrate Reductase in Melon (Cucumis melo L.) Seedlings

  • Kang, Sang-Jae;Lee, Chang-Hee;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Plants response to phosphate starvation include the changes of activity of some enzymes, such as phosphatases, fructose-1,6-bisphosphatase, sucrose-phosphate synthase and nitrate reductase. In this study, to determine the effects of phosphate starvation on the change of activities of acid and alkaline phosphatase, fructose-1,6-bisphosphatase, sucrose-phosphate synthase, and nitrate reductase were studied in melon seedlings (Cucumis melo L.). The content of the protein and chlorophyll tended to relatively reduced in melon seedlings subjected to phosphate starvation. Acid phosphatase activity in first and second leaves of melon seedlings was relatively higher than that of third and fourth leaves of seedlings in 14 days after phosphate starvation treatment, respectively. Active native-PAGE band patterns of acid phosphatase in melon leaves showed similar to activities of acid phosphatase, whereas alkaline phosphatase activity was different from the change in the activity of acid phosphatase. Inorganic phosphate content in melon seedlings leaves was constant. The changes of Fructose-1,6-bisphosphatase and sucrose phosphate synthase activities showed similar patterns in melon seedlings leaves, and between these enzymes activities and phosphate nutrition negatively related. Fructose-1,6- bisphosphatase and sucrose phosphate synthase activities showed significant difference in second and fourth leaves, but nitrate reductase showed significant difference in first and second leaves in 14days after phosphate starvation treatment. We concluded that phosphate nutrition could affect the distribution of phosphate, carbon and nitrogen in melon seedlings.

Purification and Crystallization of the Recombinant Catalytic Subunit of Pyruvate Dehydrogenase Phosphatase (Pyruvate Dehydrogenase Phosphatase의 Catalytic Subunit의 분리정제 및 결정화)

  • Kim, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.3
    • /
    • pp.146-152
    • /
    • 2003
  • Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial protein serine/threonine phosphatase that catalyzes the dephosphorylation and concomitant reactivation of the pyruvate dehydrogenase component of the pyruvate dehydrogenase complex (PDC). PDP consists of a catalytic subunit (PDPc, Mr 52,600) and regulatory subunit (PDPr, Mr 95,600). In the presence of $Ca^{2+}$, PDPc binds to the dihydrolipoamide acetyltransferase (E2) component of the pyruvate dehydrogenase complex in proximity to its substrate, the phosphorylated E1 component, thereby increasing the rate of dephosphorylation. PDPc possesses and intrinsic $Ca^{2+}$ binding site and a second $Ca^{2+}$ site is generated in the presence of E2. Using the unique interaction, highly pure PDPc was produced by the GSH-Sepharose-GST-L2 matrix with a specific activity of approx. 1000 U/mg and a yield of about 80%.