• Title/Summary/Keyword: Protein misfolding

Search Result 22, Processing Time 0.023 seconds

Effect of electromagnetic field exposure on the reproductive system

  • Gye, Myung-Chan;Park, Chan-Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and $[Ca^{2+}]i$ may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.

Solution NMR spectroscopy for investigation of liquid-liquid phase separation

  • Saio, Tomohide;Okumura, Masaki;Lee, Young-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.2
    • /
    • pp.47-52
    • /
    • 2020
  • Liquid-liquid phase separation (LLPS) of biomolecules, a newly-found phase behavior of molecules in the liquid phase, has shown to its relationship to various biological function and misfolding diseases. Extensive studies have increasingly revealed a general mechanism of LLPS and characterized the liquid droplet; ho wever, intermolecular interactions of proteins and structural states of LLPS-inducing proteins inside of the droplet remain largely unknown. Solution NMR spectroscopy has emerged as a powerful approach as it provides invaluable information on protein intermolecular interactions and structures at the atomic and residue level. We herein comprehensively address useful techniques of solution NMR including the effect of paramagnetic relaxation enhancement for the study on the LLPS and droplet based on recent studies.

Dictyostelium discoideum Ax2 as an Assay System for Screening of Pharmacological Chaperones for Phenylketonuria Mutations

  • Kim, Yu-Min;Yang, Yun Gyeong;Kim, Hye-Lim;Park, Young Shik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.782-787
    • /
    • 2015
  • In this study, we developed an assay system for missense mutations in human phenylalanine hydroxylases (hPAHs). To demonstrate the reliability of the system, eight mutant proteins (F39L, K42I, L48S, I65T, R252Q, L255V, S349L, and R408W) were expressed in a mutant strain (pah-) of Dictyostelium discoideum Ax2 disrupted in the indigenous gene encoding PAH. The transformed pah - cells grown in FM minimal medium were measured for growth rate and PAH activity to reveal a positive correlation between them. The protein level of hPAH was also determined by western blotting to show the impact of each mutation on protein stability and catalytic activity. The result was highly compatible with the previous ones obtained from other expression systems, suggesting that Dictyostelium is a dependable alternative to other expression systems. Furthermore, we found that both the protein level and activity of S349L and R408W, which were impaired severely in protein stability, were rescued in HL5 nutrient medium. Although the responsible component(s) remains unidentified, this unexpected finding showed an important advantage of our expression system for studying unstable proteins. As an economic and stable cell-based expression system, our development will contribute to mass-screening of pharmacological chaperones for missense PAH mutations as well as to the in-depth characterization of individual mutations.

Characterization of binding specificity using GST-conjugated mutant huntingtin epitopes in surface plasmon resonance (SPR)

  • Cho, Hang-Hee;Kim, Tae Hoon;Kim, Hong-Duck;Cho, Jae-Hyeon
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.185-194
    • /
    • 2021
  • Polyglutamine extension in the coding sequence of mutant huntingtin causes neuronal degeneration associated with the formation of insoluble polyglutamine aggregates in Huntington's disease (HD). Mutant huntingtin can form aggregates within the nucleus and processes of neurons possibly due to misfolding of the proteins. To better understand the mechanism by which an elongated polyglutamine causes aggregates, we have developed an in vitro binding assay system of polyglutamine tract from truncated huntingtin. We made GST-HD exon1 fusion proteins which have expanded polyglutamine epitopes (e.g., 17, 23, 32, 46, 60, 78, 81, and 94 CAG repeats). In the present emergence of new study adjusted nanotechnology on protein chip such as surface plasmon resonance strategy which used to determine the substance which protein binds in drug discovery platform is worth to understand better neurodegenerative diseases (i.e., Alzheimer disease, Parkinson disease and Huntington disease) and its pathogenesis along with development of therapeutic measures. Hence, we used strengths of surface plasmon resonance (SPR) technology which is enabled to examine binding specificity and explore targeted molecular epitope using its electron charged wave pattern in HD pathogenesis utilize conjugated mutant epitope of HD protein and its interaction whether wild type GST-HD interacts with mutant GST-HD with maximum binding affinity at pH 6.85. We found that the maximum binding affinity of GST-HD17 with GST-HD81 was higher than the binding affinities of GST-HD17 with other mutant GST-HD constructs. Furthermore, our finding illustrated that the mutant form of GST-HD60 showed a stronger binding to GST-HD23 or GST-HD17 than GST-HD60 or GST-HD81. These results indicate that the binding affinity of mutant huntingtin does not correlate with the length of polyglutamine. It suggests that the aggregation of an expanded polyglutamine might have easily occurred in the presence of wild type form of huntingtin.

Natural Products as Potential Therapeutic Strategies for Parkinson's Disease

  • Hae-Rim Cha;Mi-Ran Lee;Hyun-Jeong Cho
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.121-129
    • /
    • 2023
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects millions of people worldwide. The conventional treatment model for PD have harmful side effects, such as dyskinesia, hallucinations, nausea, and fatigue, and are expensive. As a result, natural products derived from medicinal herbs, fruits, and vegetables have emerged as potential therapeutic strategies for PD. These natural products have been traditionally used to treat various diseases and have been shown to possess anti-oxidative and anti-inflammatory properties, as well as inhibitory roles in protein misfolding, mitochondrial homeostasis, neuroinflammation and other neuroprotective processes. In addition, they have fewer side effects and are generally less expensive than conventional drugs. It also discusses the limitations of current treatments and the potential of natural remedies derived from plants to treat PD in new ways or as supplements to existing treatments. The multifunctional mechanisms of medicinal plants that may be utilized to treat PD are also discussed, including the modulation of neurotransmitter systems, the enhancement of neurotrophic factors, and the inhibition of apoptosis. While more research is needed to fully understand their mechanisms of action and efficacy, natural products have the potential to provide safer and more effective treatment options for patients with PD.

Improvement of production of active cyclodextrin glucanotransferase by coexpression GroEL/ES chaperons in E. coli (E. coli에서 GroEL/ES chaperone 공발현에 의한 활성형 cyclodextrin glucanotransferase의 생산 증대)

  • 권미정;박소림;김병우;김성구;남수완
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.688-693
    • /
    • 2002
  • Molecular chaperones prevent the misfolding of newly synthesized polypeptides in the cell. The coexpression of molecular chaperones could be expected to improve the production of soluble and active recombinant proteins. In this study, the effect of coexpression of E. coli GroEL/ES chaperone on the active production of Bacillus macerans cyclodextrin glucanotransferase (CGTase) in E. coli was investigated. Two plasmids, pTCGT1 and pGro7 in which the cgt and the groEL/ES genes are under the control of 77 promoter and araB promoter, respectively, were co-transformed into E. coli. With a series of cultures of recombinant E. coli cells, the optimal concentrations of IPTG and L-arabinose were found be 1 mM and 0.3 mg/$m\ell$, respectively. When IPTG and L-arabinose were added at 0.8~1.0 $OD_{600}$ and 0.4~0.5 $OD_{600}$, active CGTase production was increased significantly. This coexpression condition resulted in 1.5-fold increased level of soluble CGTase (0.7~0.73 unit/$m\ell$), compared to the level of CGTase in the single expression (0.36~0.56 unit/$m\ell$). An SDS-PACE analysis revealed that about 33.6% of CGTase in the total CGTase protein was found in the soluble fraction by coexpression of GroEL/ES chaperone.

Characterization of an Extracytoplasmic Chaperone Spy in Protecting Salmonella against Reactive Oxygen/Nitrogen Species

  • Park, Yoon Mee;Lee, Hwa Jeong;Bang, Iel Soo
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.207-213
    • /
    • 2014
  • Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with ${\lambda}$ Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in $H_2O_2$ containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to $H_2O_2$. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.

High-Level Production of High-Purity Human and Murine Recombinant Prion Proteins Functionally Compatible to In Vitro Seeding Assay

  • Hwang, Hae-Gwang;Kim, Dae-Hwan;Lee, Jeongmin;Mo, Youngwon;Lee, Se-Hoon;Lee, Yongjin;Hyeon, Jae Wook;Lee, Sol Moe;Cheon, Yong-Pil;Choi, Eun-Kyoung;Kim, Su Yeon;Lee, Yeong Seon;Son, Young-Jin;Ryou, Chongsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1749-1759
    • /
    • 2018
  • Recombinant (rec) prion protein (PrP) is an extremely useful resource for studying protein misfolding and subsequent protein aggregation events. Here, we report mass production of high-purity rec-polypeptide encoding the C-terminal globular domain of PrP; (90-230) for human and (89-231) for murine PrP. These proteins were expressed as His-tagged fusion proteins in E. coli cultured by a high cell-density aerobic fermentation method. RecPrPs recovered from inclusion bodies were slowly refolded under reducing conditions. Purification was performed by a sequence of metal-affinity, cation-exchange, and reverse-phase chromatography. The current procedure yielded several dozens of milligrams of recPrP per liter with >95% purity. The purified recPrPs predominantly adopted an ${\alpha}$-helix-rich conformation and were functionally sufficient as substrates to measure the seeding activity of human and animal prions. Establishment of a procedure for high-level production of high-purity recPrP supports the advancement of in vitro investigations of PrP including diagnosis for prion diseases.

Role of tetrahydrobiopterin in dopaminergic cell death: Relevance to Parkinson's disease

  • Choi, Hyun-Jin;Hwang, On-You
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2005.04a
    • /
    • pp.53-60
    • /
    • 2005
  • Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting $1\%$ of the population above the age of 65 and is characterized by a selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although the underlying cause of dopaminergic cell death or the mechanism by which these cells degenerate is still not clearly understood, oxidative stress, mitochondrial dysfunction, and protein misfolding are thought to play important roles in the dopaminergic degeneration in PD. Tetrahydrobiopterin (BH4) is synthesized exclusively in the monoaminergic, including dopaminergic, cells and serves as an endogenous and obligatory cofactor for syntheses of the potential oxidative stressors dopamine and nitric oxide. In addition to its contribution toward the syntheses of these two potentially toxic molecules, BH4 itself can directly generate oxidative stress. BH4 undergoes oxidation during the hydroxylation reaction as well as nonenzymatic autooxidation to produce hydrogen peroxide and superoxide radical. We have previously suggested BH4 as an endogenous molecule responsible for the dopaminergic neurodegeneration. BH4 exerts selective toxicity to dopamine-producing cells via generation of oxidative stress, mitochondrial dysfunction, and apoptosis. BH4 also induces morphological, biochemical, and behavioral characteristics associated with PD in vivo. BH4 as well as enzyme activity and gene expression of GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis pathway, are readily upregulated by cellular changes such as calcium influx and by various stimuli including stress situations. This points to the possibility that cellular availability of BH4 might be increased in aberrant conditions, leading to increased extracellular BH4 subsequent degeneration. The fact that BH4 is specifically and endogenously synthesized in dopaminergic cells, Is readily upregulated, and generates oxidative stress-related cell death provides physical relevance of this molecule as an attractive candidate with which to explain the mechanism of pathogenesis of PD.

  • PDF

Cytosolic prion protein induces apoptosis in human neuronal cell SH-SY5Y via mitochondrial disruption pathway

  • Wang, Xin;Dong, Chen-Fang;Shi, Qi;Shi, Song;Wang, Gui-Rong;Lei, Yan-Jun;Xu, Kun;An, Run;Chen, Jian-Ming;Jiang, Hui-Ying;Tian, Chan;Gao, Chen;Zhao, Yu-Jun;Han, Jun;Dong, Xiao-Ping
    • BMB Reports
    • /
    • v.42 no.7
    • /
    • pp.444-449
    • /
    • 2009
  • Different neurodegenerative disorders like prion disease, is caused by protein misfolding conformers. Reverse-transfected cytosolic prion protein (PrP) and PrP expressed in the cytosol have been shown to be neurotoxic. To investigate the possible mechanism of neurotoxicity due to accumulation of PrP in cytosol, a PrP mutant lacking the signal and GPI (CytoPrP) was introduced into the SH-SY5Y cell. MTT and trypan blue assays indicated that the viability of cells expressing CytoPrP was remarkably reduced after treatment of MG-132. Obvious apoptosis phenomena were detected in the cells accumulated with CytoPrP, including loss of mitochondrial transmembrane potential, increase of caspase-3 activity, more annexin V/PI-double positive-stained cells and reduced Bcl-2 level. Moreover, DNA fragmentation and TUNEL assays also revealed clear evidences of late apoptosis in the cells accumulated CytoPrP. These data suggest that the accumulation of CytoPrP in cytoplasm may trigger cell apoptosis, in which mitochondrial relative apoptosis pathway seems to play critical role.