• Title/Summary/Keyword: Protein kinase D

Search Result 397, Processing Time 0.028 seconds

Proteome Analysis of Bovine Longissimus dorsi Muscle Associated with the Marbling Score

  • Shen, Y.N.;Kim, S.H.;Yoon, D.H.;Lee, H.G.;Kang, H.S.;Seo, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1083-1088
    • /
    • 2012
  • The breeding value of marbling score in skeletal muscle is an important factor for evaluating beef quality. In the present study, we investigated proteins associated with the breeding value of the marbling score for bovine sirloin to select potential biomarkers to improve meat quality through comparative proteomic analysis. Proteins isolated from muscle were separated by two-dimensional gel electrophoresis. After analyzing images of the stained gel, seven protein spots for the high marbling score group were identified corresponding to changes in expression that were at least two-fold compared to the low marbling score group. Four spots with increased intensities in the high marbling score group were identified as phosphoglycerate kinase 1, triosephophate isomerase, acidic ribosomal phosphoprotein PO, and capping protein (actin filament) Z-line alpha 2. Spots with decreased intensities in the high marbling score group compared to the low score group were identified as 14-3-3 epsilon, carbonic anhydrase II, and myosin light chain 1. Expression of myosin light chain 1 and carbonic anhydrase 2 was confirmed by Western blotting. Taken together, these data could help improve the economic performance of cattle and provide useful information about the underlying the function of bovine skeletal muscle.

β-arrestin Promotes c-Jun N-terminal Kinase Mediated Apoptosis via a GABABR·β-arrestin·JNK Signaling Module

  • Wu, Jin-Xia;Shan, Feng-Xiao;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.1041-1046
    • /
    • 2014
  • Evidence is growing that the $GABA_B$ receptor, which belongs to the G protein-coupled receptor (GPCR) superfamily, is involved in tumorigenesis. Recent studies have shown that ${\beta}$-arrestin can serve as a scaffold to recruit signaling protein c-Jun N-terminal knase (JNK) to GPCR. Here we investigated whether ${\beta}$-arrestin recruits JNK to the $GABA_B$ receptor and facilitates its activation to affect the growth of cancer cells. Our results showed that ${\beta}$-arrestin expression is decreased in breast cancer cells in comparison with controls. ${\beta}$-arrestin could enhance interactions of the $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module in MCF-7 and T-47D cells. Further studies revealed that increased expression of ${\beta}$-arrestin enhances the phosphorylation of JNK and induces cancer cells apoptosis. Collectively, these results indicate that ${\beta}$-arrestin promotes JNK mediated apoptosis via a $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

A Mixture of Morus alba and Angelica keiskei Leaf Extracts Improves Muscle Atrophy by Activating the PI3K/Akt/mTOR Signaling Pathway and Inhibiting FoxO3a In Vitro and In Vivo

  • Hyun Hwangbo;Min Yeong Kim;Seon Yeong Ji;Da Hye Kim;Beom Su Park;Seong Un Jeong;Jae Hyun Yoon;Tae Hee Kim;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1635-1647
    • /
    • 2023
  • Muscle atrophy, which is defined as a decrease in muscle mass and strength, is caused by an imbalance between the anabolism and catabolism of muscle proteins. Thus, modulating the homeostasis between muscle protein synthesis and degradation represents an efficient treatment approach for this condition. In the present study, the protective effects against muscle atrophy of ethanol extracts of Morus alba L. (MA) and Angelica keiskei Koidz. (AK) leaves and their mixtures (MIX) were evaluated in vitro and in vivo. Our results showed that MIX increased 5-aminoimidazole-4-carboxamide ribonucleotide-induced C2C12 myotube thinning, and enhanced soleus and gastrocnemius muscle thickness compared to each extract alone in dexamethasone-induced muscle atrophy Sprague Dawley rats. In addition, although MA and AK substantially improved grip strength and histological changes for dexamethasone-induced muscle atrophy in vivo, the efficacy was superior in the MIX-treated group. Moreover, MIX further increased the expression levels of myogenic factors (MyoD and myogenin) and decreased the expression levels of E3 ubiquitin ligases (atrogin-1 and muscle-specific RING finger protein-1) in vitro and in vivo compared to the MA- and AK-alone treatment groups. Furthermore, MIX increased the levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), and mammalian target of rapamycin (mTOR) that were reduced by dexamethasone, and downregulated the expression of forkhead box O3 (FoxO3a) induced by dexamethasone. These results suggest that MIX has a protective effect against muscle atrophy by enhancing muscle protein anabolism through the activation of the PI3K/Akt/mTOR signaling pathway and attenuating catabolism through the inhibition of FoxO3a.

Effects of Chaenomelis Fructus Extract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes (모과추출물의 C2C12 근육세포에서 근분화 및 에너지대사조절인자 발현 증진 효과 연구)

  • Kang, Seok Yong;Hyun, Sun Young;Kwon, Yedam;Park, Yong-Ki;Jung, Hyo Won
    • The Korea Journal of Herbology
    • /
    • v.34 no.6
    • /
    • pp.99-107
    • /
    • 2019
  • Objective : The present study was conducted to investigate the effects of Chaenomelis Fructus (CF) on the regulation of biogenesis in C2C12 mouse skeletal muscle cells. Methods : C2C12 myoblasts were differentiated into myotubes in 2% horse serum-containing medium for 5 days, and then treated with CF extract at different concentrations for 48 hr. The expression of muscle differentiation markers, myogenin and myosin heavy chain (MHC) and mitochondrial biogenesis-regulating factors, peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC1α), sirtuin1 (Sirt1), nuclear respiratory factor1 (NRF1) and transcription factor A, mitochondrial (TFAM), and the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) were determined in C2C12 myotubes by reverse transcriptase (RT)-polymerase chain reaction (RT-PCR) and western blot, respectively. The cellular glucose levels and total ATP contents were measured by cellular glucose uptake and ATP assays, respectively. Results : Treatment with CF extract (0.01, 0.02, and 0.05 mg/㎖) significantly increased the expression of MHC protein in C2C12 myotubes compared with non-treated cells. CF extract significantly increased the expression of PGC1α and TFAM in the myotubes. Also, CF extract significantly increased glucose uptake levels and ATP contents in the myotubes. Conclusion : CF extract can stimulate C2C12 myoblasts differentiation into myotubes and increase energy production through upregulation of the expression of mitochondrial biogenetic factors in C2C12 mouse skeletal muscle cell. This suggests that CF can help to improve skeletal muscle function with stimulation of the energy metabolism.

Proteome Analysis of Recombinant CHO Cells Under Hyperosmotic Stress

  • Lee, Mun-Su;Kim, Gyeong-Uk;Kim, Yeong-Hwan;Lee, Gyun-Min
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.311-314
    • /
    • 2003
  • Under hyperosmotic stress, rCHO cells display decreased specific growth rate $({\mu})$ and increased specific antibody productivity $(q_{Ab})$. The effects of hyperosmotic stress on batch culture cellular dynamics are not well understood. To this end, we conducted a proteome profile of rCHO cells, using 2D-gel, MALDI-TOF-MS and MS/MS. As a result, the proteome profile of rCHO cells could be established using 41 identified proteins. Based on this proteome profile of rCHO cells, we have found at least 8 differently expressed spots at hyperosmotic osmolality (450 mOsm/kg). Among these spots, two metabolic enzymes were found to be up-regulated (pyruvate kinase and GAPDH), while down-regulated protein was identified as tubulin. It shows that hyperosmotic stress can alter metabolic state, by up-regulated activities of two glycolysis enzymes, which could lead to activate the generation of metabolic energy. Tubulin expression was down-regulated, suggesting a reduction of cell division. Finally, the increased conversion energy could leads to improve overall productivity.

  • PDF

Conformationally Constrained Analogues of Diacylglycerol Having a Perhydrofuro[3,4-c]furan-1,4-dione Bis-${\gamma}$-butyrolactone Skeleton

  • Lee, Jee-Woo;Nancy-E. Lewin;Peter-M. Blumberg;Victor-E. Marquez
    • Archives of Pharmacal Research
    • /
    • v.21 no.2
    • /
    • pp.164-167
    • /
    • 1998
  • Bis-${\gamma}$-lactones (1,2) having a perhydrofuro[3,4-c]furan-1,4-dione skeleton were designed as conformationally constrained diacylglycerol analogues. They were synthesized from D-apiose in 11 steps, and evaluated as $PKC-{\alpha}$ ligands by measuring their ability to displace bound $^3H$]PDBU from the enzyme. The compounds showed moderate binding affinities with $K_i$ values of 13.89 (${\pm}5.67$) ${\mu}M$ and 11.47 (${\pm}0.89$) ${\mu}M$, respectively. Their similar binding affinities indicate that these two bicyclic compounds were not effectively discriminated by $PKC-{\alpha}$ in terms of the direction of the side chain as other ligands built on similar bis-${\gamma}$-lactones.

  • PDF

Evaluation of Anti-diabetic Effect of Biochanin A in C2C12 Myotube (근육세포 배양 계 에서 Biochanin A의 항 당뇨 효능평가)

  • Hwang, Jin-Taek;Kim, Sung-Hee
    • KSBB Journal
    • /
    • v.27 no.1
    • /
    • pp.57-60
    • /
    • 2012
  • In this study, we evaluated the effects of Biochanin A on glucose uptake in C2C12 myotube. We found that Biochanin A significantly stimulated 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) uptake in a dose-dependent manner. In addition, AMPK and PPAR-gamma activities were markedly increased by Biochanin A in a dose-dependent manner. However, Akt, an insulin dependent signaling molecule, did not change by Biochanin A. These results suggest that Biochanin A stimulates glucose uptake via AMPK and PPAR-gamma pathways.

Acidity Enhances the Ability of 5-Aminoimidazole-4-carboxamide Ribonucleotide to Increase Respiration and Lipid Metabolism in Daphnia magna

  • Han, Chloe;Kottapalli, Aarthi;Boyapati, Keerti;Chan, Sarah;Jeong, Yong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.253-259
    • /
    • 2019
  • 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), a structural analog of adenosine monophosphate (AMP), promotes oxidative remodeling in muscle cells. AICAR activates AMP-dependent protein kinase (AMPK), thus increasing lipid metabolism, respiration, and mitochondrial counts. This process is called oxidative remodeling, which enhances the physical endurance of mice. To test this drug on an invertebrate that is genetically similar to humans, we used the small water crustacean Daphnia magna, which is sensitive to changes in water conditions. We tested the effects of pH on the efficacy of AICAR using two methods. One method measured oxygen consumption of Daphnia in oxygen chambers. The other method determined lipid levels of Daphnia through fluorescent tagging of lipids. The results showed that when exposed to AICAR at pH 6.58, D. magna consumed more oxygen and had lower overall levels of lipids, which is consistent with the expected effects of AICAR, such as increased respiration and lipid metabolism.

Puerarin pretreatment attenuates cardiomyocyte apoptosis induced by coronary microembolization in rats by activating the PI3K/Akt/GSK-3β signaling pathway

  • Chen, Zhi-Qing;Zhou, You;Huang, Jun-Wen;Chen, Feng;Zheng, Jing;Li, Hao-Liang;Li, Tao;Li, Lang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.147-157
    • /
    • 2021
  • Coronary microembolization (CME) is associated with cardiomyocyte apoptosis and cardiac dysfunction. Puerarin confers protection against multiple cardiovascular diseases, but its effects and specific mechanisms on CME are not fully known. Hence, our study investigated whether puerarin pretreatment could alleviate cardiomyocyte apoptosis and improve cardiac function following CME. The molecular mechanism associated was also explored. A total of 48 Sprague-Dawley rats were randomly divided into CME, CME + Puerarin (CME + Pue), sham, and sham + Puerarin (sham + Pue) groups (with 12 rats per group). A CME model was established in CME and CME + Pue groups by injecting 42 ㎛ microspheres into the left ventricle of rats. Rats in the CME + Pue and sham + Pue groups were intraperitoneally injected with puerarin at 120 mg/kg daily for 7 days before operation. Cardiac function, myocardial histopathology, and cardiomyocyte apoptosis index were determined via cardiac ultrasound, hematoxylin-eosin (H&E) and hematoxylin-basic fuchsin-picric acid (HBFP) stainings, and TdT-mediated dUTP nick-end labeling (TUNEL) staining, respectively. Western blotting was used to measure protein expression related to the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway. We found that, puerarin significantly ameliorated cardiac dysfunction after CME, attenuated myocardial infarct size, and reduced myocardial apoptotic index. Besides, puerarin inhibited cardiomyocyte apoptosis, as revealed by decreased Bax and cleaved caspase-3, and up-regulated Bcl-2 and PI3K/Akt/GSK-3β pathway related proteins. Collectively, puerarin can inhibit cardiomyocyte apoptosis and thus attenuate myocardial injury caused by CME. Mechanistically, these effects may be achieved through activation of the PI3K/Akt/GSK-3β pathway.