• Title/Summary/Keyword: Protein kinase C-${\beta}$

Search Result 231, Processing Time 0.02 seconds

Protein Kinase C (PKC) in Cellular Signalling System: Translocation of Six Protein Kinase C Isozymes in Human Prostate Adenocarcinoma PC-3 Cell Line (세포신호계에 있어서 Protein Kinase C: 사람의 전입선 adenocarcinoma PC-3 세포내의 여섯개의 Protein kinase C 동립효소의 translocation)

  • Park, Won-Chul;Ahn, Chang-Ho
    • The Korean Journal of Zoology
    • /
    • v.36 no.4
    • /
    • pp.439-451
    • /
    • 1993
  • Protein kinase C isozymes in a human prostate adenocarcinoma PC-3 cell line were characterized. Immunoreactive bands and immunocytochemical stains were obsenred in PC-3 cells with antibodies raised against protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$, and ζ types, respectively. Protein kinase C ${\alpha}$ corresponded to a immunoreactive band at a molecular weight of 80,000-dalton, whereas molecular weights of other immunoreactive isozvmes of protein kinase C were detected at 68,000-dalton. Protein kinHse C $\delta$ and ζ antibodies detected additional bands at 55,000-dalton and 80,000-dalton, respectively Immunocvtochemical study confirmed the results of the immunoblotting experiments qualitatively: all six protein kinase C isozymes were detected in the cytoplasm of PC-3 cells. Translocation of protein kinase C in PC-3 cells were also examined with phorbol 12-myristate 13-acetate (PMA), bryostatin 2, diolein, and 1-oleoyl-2-acetyl glycerol (OAG). Differential reactions of protein kinase C isozvmes to these activators were obsenred. When PC-3 cells were treated with 10mM bryostatin 2, protein kinase C isozyme u was translocated into the nucleus, whereas s type was translocated into the plasma membrane and the nucleus. Protein kinase C ${\alpha}$ and ζ types were translocated into the nucleus following the treatment with 101M diolein, whereas protein kinase C ${\alpha}$, ${\beta}$, ${\gamma}$, and $\varepsilon$ types were translocated into the nucleus by the treatment with 10mM OAG. Protein kinase C ${\alpha}$ and $\varepsilon$ types were translocated into the nucleus in the presence of 100nM PMA. Protein kinase C $\delta$ type was translocated to the nuclear membrane by these activators, however, only PMA-induced translocation was inhibited by protein kinase C inhibitor, 1-(5-isoquinolinesulfonyll-2-methvlpiperazine dihvdrochloride (H7) . H7 inhibited translocation of protein kinase C ${\alpha}$ type induced by PMA, ${\beta}$ type by OAG and s type by PMA and OAG, whereas it did not affect translocations induced by bryostatin and diolein, respectively. These results suggest that there exist six isoformes of protein kinase C (${\alpha}$, ${\beta}$, ${\gamma}$, $\delta$, $\varepsilon$ and ζ types) in PC-3 cells and that each of these isozvmes distinctivelv reacts to bryostatin, diolein, OAG and PMA, in part due to an altered molecular size and conceivably discrete binding site(s).

  • PDF

Molecular cloning and nucleotide sequence of schizosaccharomyces pombe Homologue of the receptor for activated protein kinase C gene

  • Park, Seung-Keil;Yoo, Hyang-Sook
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.128-131
    • /
    • 1995
  • Using differential hybridization, we selected the prk gene fortuitously from Schizosaccharomyces pombe homologous to RACK1 of rat which encodes the receptor for activated protein kinase C. The cDNA sequence of prk was determined and its deduced amino acid sequence was 76% homologous to RACK1 and had the feature of trimeric G protein bata subunit. The specific amino acid sequences required for the protein kinase C binding were also present in Prk as in the case of RACK1 protein. From these similarities, we suggest that the Prk is protein kinase C binding protein of S. prombe. The involvement of Prk in signal transduction mediated by protein kinase C remained to be studied.

  • PDF

Expression of protein kinase C in the testes of horse (말 정소내 protein kinase C의 발현)

  • Jin, Jae-kwang;Shin, Tae-kyun
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • To investigate the involvement of protein kinase C(PKC) isoenzyme in the testes which control spermatogenesis and hormone secretion, we examined cellular distribution of four types of PKC $\alpha$, ${\beta}I$, ${\delta}$ and ${\theta}$ in the horse testes using PKC antisera by western blot analysis and immunohistochemistry. By the western blot analysis, PKC $\alpha$ and ${\beta}I$ were detected at 82KD, while PKC ${\delta}$ and ${\theta}$ were detected at 80KD in the testes of both juvenile and adult horses. In juvenile horse, PKC $\alpha$, ${\delta}$ and ${\theta}$ except ${\beta}I$ were not detected in the cells of the testes, whereas PKC ${\beta}I$ was immunoreacted with only in spermatocytes. In adult, PKC $\alpha$, ${\beta}I$, ${\delta}$ and ${\theta}$isoenzymes were localized in interstitial cells of the testes. In the seminiferous tubules, PKC ${\beta}I$ is localized in spermatocyte, spermatid and spermatozoa, while PKC ${\delta}$ is localized only in spermatids. We suggest that this is a first report to localize PKC in the testes of horse and PKC isoenzymes are upregulated in the cells of horse testes depending on ages. These findings also suggest that certain PKC isoenzyme plays an important role in the signal transduction of spermatogenic cells and interstitial cells in horse testes.

  • PDF

Isoforms of Protei,n Kinase C during the Differentiation of Chick Limb Mesenchvme (계배 간충직세포 분화과정에서의 Protein Kinase C Isoform들의 변화)

  • 손종경;강신성
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.286-293
    • /
    • 1995
  • The present studies were undertaken to examine the activitites of PKC isoforms in cultures of chick limb mesenchvme. Micromass cultures were prepared using wing buds of stage 23/24 (Hamburger and Hamilton, 19511 chick embryo. The cells were homogenized and DEAE-cellulose column chromatography was performed to get fraction containing protein kinase C (PKC) activity. PKC isoforms were resolved with hvdroxyapatitie column chromatography. Profile of PKC isoforms of cultures were compared with that of rat brain. Activity of $PKC-\beta$ isoform was appeared at the early stage of chondrogenesis. On 3 daw of culture, activities of both PKC a and $\beta$ were observed with remarkable increase but no activity of y isoform was appeared. Treatment of phorbol-12-mvristate-13-acetate (PMA) (10-7 M) to the culture inhibited chondrosenesis and down-regulated a and $\beta$ isoforms. Staurosporine promoted chondro!genesis without any effect on PKC isioforms profile. These data indicate that PKC a and $\beta,$ especiallv $\beta$ isoform is related to chondrosenesis and the promoting effect of staurosporine on chondrogenesis is not related to PKC isoforms activities.

  • PDF

Role of Protein Kinase C in Abnormal Proliferation of Vascular Endothelial Cell induced by 1,2-Dimethylhydrazine; Analysis of Isoform (디메틸히드라진(1,2-Dimethylhydrazine)으로 유도된 혈관내피세포의 비정상적인 증식에서 단백활성효소 시이(Protein Kinase C)의 역할; 동종효소 분석)

  • Lee, Jin;Bae, Yong Chan;Park, Suk Young;Moon, Jae Sul;Nam, Su Bong
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.8-12
    • /
    • 2007
  • Purpose: Protein tyrosine kinase(PTK), protein kinase C(PKC), oxidase, as a mediator, have been known to take a role in signal transduction pathway of angiogenesis. The authors confirmed that PKC is the most noticeable mediator for abnormal proliferation of vascular endothelial cells through in vitro study model using the inhibitors, targeting the formation of three co-enzymes. In this study, we would investigate which isoform of PKC play an important role in abnormal angiogenesis of vascular endothelial cell. Methods: In 96 well plates, $10^4$ HUVECs(human umbilical vein endothelial cells) were evenly distributed. Two groups were established; the control group without administration of DMH(1,2-dimethylhydrazine) and the DMH group with administration of $7.5{\times}10^{-9}M$ DMH. RNA was extracted from vascular endothelial cell of each group and expression of the PKC isoform was analyzed by RT-PCR(reverse transcriptase-polymerase chain reaction) method. Results: RT-PCR analysis showed that $PKC{\alpha}$, $-{\beta}I$, $-{\beta}II$, $-{\eta}$, $-{\mu}$ and $-{\iota}$ were expressed in vascular endothelial cells of each group. DMH incresed the expression of $PKC{\alpha}$ and $PKC{\mu}$, and decreased $PKC{\beta}I$, $PKC{\beta}II$ expression dominantly. Conclusion: Based on the result of this study, it was suggested that $PKC{\alpha}$ and $PKC{\mu}$ may have significant role in abnormal proliferation of vascular endothelial cell.

Overexpression of Protein Kinase $C{\beta}_1$ Restores Mitogenic Responses of Enterocytic Differentiated Colon Carcinoma Cells to Diacylglycerol and Basic FGF

  • Lee, Han-Soo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.194-199
    • /
    • 1997
  • Previous studies have shown that the HD3 human enterocytic differentiated colon carcinoma cell lines having low $PKC{\beta}$ activity did not respond to diacylglycerol and basic FGF by growth and by activation of pp57 MAP kinase, but undifferentiated cell lines exhibiting high $PKC{\beta}$ activity did. To confirm a role of $PKC{\beta}$ in colonocyte mitogenesis, derivatives of HD3 cell line that stably overexpress a full-length of cDNA encoding the ${\beta}_1$ isoform of human PKC were generated. The abundance and activity of $PKC{\beta}$ in two of the these cell lines, PKC3 and PKC8 were much higher than those in the C1 control cell line that carries the vector lacking the $PKC{\beta}_1\;cDNA$ insert. Following exposure to diacylglycerol or basic FGF, proliferation of PKC3 and PKC8 cells increased about 50%; but this effect was not seen with the control C1 cells. Also, in contrast to the control cells, the $PKC{\beta}_1-overproducing$ cells displayed activation of pp57 MAP kinase when treated with diacylglycerol and basic FGF as undifferentiated cell lines did. These results provide direct evidence that $PKC{\beta}_1$ which plays a key role in mitogenic responses of colon carcinoma cells to diacylglycerol and basic FGF is down-regulated in enterocytic differentiation of colon cells.

  • PDF

PKCβ Positively Regulates RANKL-Induced Osteoclastogenesis by Inactivating GSK-3β

  • Shin, Jihye;Jang, Hyunduk;Lin, Jingjing;Lee, Soo Young
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.747-752
    • /
    • 2014
  • Protein kinase C (PKC) family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. However, the role of PKC in receptor activator of NF-${\kappa}B$ ligand (RANKL) signaling has remained elusive. We now demonstrate that $PKC{\beta}$ acts as a positive regulator which inactivates glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$) and promotes NFATc1 induction during RANKL-induced osteoclastogenesis. Among PKCs, $PKC{\beta}$ expression is increased by RANKL. Pharmacological inhibition of $PKC{\beta}$ decreased the formation of osteoclasts which was caused by the inhibition of NFATc1 induction. Importantly, the phosphorylation of GSK-$3{\beta}$ was decreased by $PKC{\beta}$ inhibition. Likewise, down-regulation of $PKC{\beta}$ by RNA interference suppressed osteoclast differentiation, NFATc1 induction, and GSK-$3{\beta}$ phosphorylation. The administration of PKC inhibitor to the RANKL-injected mouse calvaria efficiently protected RANKL-induced bone destruction. Thus, the $PKC{\beta}$ pathway, leading to GSK-$3{\beta}$ inactivation and NFATc1 induction, has a key role in the differentiation of osteoclasts. Our results also provide a further rationale for $PKC{\beta}$'s therapeutic targeting to treat inflammation-related bone diseases.

The C-terminal domain of PLD2 participates in degradation of protein kinase CKII β subunit in human colorectal carcinoma cells

  • Lee, Young-Hoon;Uhm, Jong-Su;Yoon, Soo-Hyun;Kang, Ji-Young;Kim, Eun-Kyung;Kang, Beom-Sik;Min, Do-Sik;Bae, Young-Seuk
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.572-577
    • /
    • 2011
  • Elevated phospholipase D (PLD) expression prevents cell cycle arrest and apoptosis. However, the roles of PLD isoforms in cell proliferation and apoptosis are incompletely understood. Here, we investigated the physiological significance of the interaction between PLD2 and protein kinase CKII (CKII) in HCT116 human colorectal carcinoma cells. PLD2 interacted with the CKII${\beta}$ subunit in HCT116 cells. The C-terminal domain (residues 578-933) of PLD2 and the N-terminal domain of CKII${\beta}$ were necessary for interaction between the two proteins. PLD2 relocalized CKII${\beta}$ to the plasma membrane area. Overexpression of PLD2 reduced CKII${\beta}$ protein level, whereas knockdown of PLD2 led to an increase in CKII${\beta}$ expression. PLD2-induced CKII${\beta}$ reduction was mediated by ubiquitin-dependent degradation. The C-terminal domain of PLD2 was sufficient for CKII${\beta}$ degradation as the catalytic activity of PLD2 was not required. Taken together, the results indicate that the C-terminal domain of PLD2 can regulate CKII by accelerating CKII${\beta}$ degradation in HCT116 cells.

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.