• 제목/요약/키워드: Protein drug formulation

검색결과 16건 처리시간 0.027초

Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems

  • Yeo, Yeon;Park, Ki-Nam
    • Archives of Pharmacal Research
    • /
    • 제27권1호
    • /
    • pp.1-12
    • /
    • 2004
  • Initial burst is one of the major challenges in protein-encapsulated microparticle systems. Since protein release during the initial stage depends mostly on the diffusional escape of the protein, major approaches to prevent the initial burst have focused on efficient encapsulation of the protein within the microparticles. For this reason, control of encapsulation efficiency and the extent of initial burst are based on common formulation parameters. The present article provides a literature review of the formulation parameters that are known to influence the two properties in the emulsion-solvent evaporation/extraction method. Physical and chemical properties of encapsulating polymers, solvent systems, polymer-drug interactions, and properties of the continuous phase are some of the influential variables. Most parameters affect encapsulation efficiency and initial burst by modifying solidification rate of the dispersed phase. In order to prevent many unfavorable events such as pore formation, drug loss, and drug migration that occur while the dispersed phase is in the semi-solid state, it is important to understand and optimize these variables.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

Pharmacokinetics of New Solubilizer in Intravenous Micelle Formulation of Paclitaxel in Mice

  • Lee, Sun-A;Han, Kyu-Won;Um, So-Young;Kim, Kil-Soo
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.413.2-413.2
    • /
    • 2002
  • Paclitaxel is an antitumor agent with poor water solubility and its pharmacokinetics are nonlinear. Cremophor EL. a surfactant used in the formulation of paclitaxel. may cause adverse effects. New solubilizer(Aceporol 460) was developed to reduce side effects of Cremophor EL and to increase the effect of drug as surfactant used in the intravenous micelle formulation of anticancer drug paclitaxel. We studied easy, rapid quantitative determination of Aceporol 460 in mouse plasma samples. which was achieved by complexation of the compound with the Coomassie brilliant blue G-250 dye in protein-free extracts. (omitted)

  • PDF

단백질 약물 방출속도에 미치는 친수성 첨가제의 영향 (Effects of Hydrophilic Additives on the Release Rate of Protein Drugs)

  • 권영관;김지현;유영제
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.213-217
    • /
    • 2007
  • 첨가제가 단백질 약물 방출 속도 및 약물 제제 제조 및 구조에 미치는 영향을 고찰하였다. 친수성 첨가제인 D-sorbitol의 경우 친유성 첨가제보다 단백질 약물 방출 속도를 감소시킬 수 있었으며 최적의 농도는 3% (w/v)로 나타났다. 또한 제제 제조시 점도를 낮게 유지할 뿐 아니라 상분리 없는 균일한 pluronic 용액상태를 유지하여 약물이 첨가될 경우에 균일한 약물제제를 만들 수 있었다. 한편 D-sorbitol은 pluronic 수용액의 CMC를 낮추고 마이셀 표면에 작용하여 구조를 강화하는 역할을 수행하는 것으로 보인다. 따라서 pluronic 제제에 D-sorbitol을 첨가하여 단백질 약물의 안정성을 향상시키고 효과적인 약물전달 시스템을 설계할 수 있었다.

Effects of Solvent Selection and Fabrication Method on the Characteristics of Biodegradable Poly(lactide-co-glycolide) Microspheres Containing Ovalbumin

  • Cho, Seong-Wan;Song, Seh-Hyon;Shoi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.385-390
    • /
    • 2000
  • To demonstrate the effect of formulation conditions on the controlled release of protein from poly(lactide-co-glycolide) (PLGA) microspheres for use as a parenteral drug carrier, ovalbumin (OVA) microspheres were prepared using the W/O/W multiple emulsion solvent evaporation and extraction method. Methylene chloride or ethyl acetate was applied as an organic phase and poly(vinyl alcohol) as a secondary emulsion stabilizer. Low loading efficiencies of less than 20% were observed and the in vitro release of OVA showed a burst effect in all batches of different microspheres, followed by a gradual release over the next 6 weeks. Formulation processes affected the size and morphology, drug content, and the controlled release of OVA from PLGA microspheres.

  • PDF

Hyaluronic Acid in Drug Delivery Systems

  • Jin, Yu-Jin;Ubonvan, Termsarasab;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권spc호
    • /
    • pp.33-43
    • /
    • 2010
  • Hyaluronic acid (HA) is a biodegradable, biocompatible, non-toxic, non-immunogenic and non-inflammatory linear polysaccharide, which has been used for various medical applications including arthritis treatment, wound healing, ocular surgery, and tissue augmentation. Because of its mucoadhesive property and safety, HA has received much attention as a tool for drug delivery system development. It has been used as a drug delivery carrier in both nonparenteral and parenteral routes. The nonparenteral application includes the ocular and nasal delivery systems. On the other hand, its use in parenteral systems has been considered important as in the case of sustained release formulation of protein drugs through subcutaneous injection. Particles and hydrogels by various methods using HA and HA derivatives as well as by conjugation with other polymer have been the focus of many studies. Furthermore, the affinity of HA to the CD44 receptor which is overexpressed in various tumor cells makes HA an important means of cancer targeted drug delivery. Current trends and development of HA as a tool for drug delivery will be outlined in this review.

생분해성 폴리락티드/글리콜리드 미립구를 이용한 재조합 소 성장호르몬(rBST)의 지속성주사제 설계 (Sustained Release Injectable of Recombinant Bovine Somatotropin in Biodegradable Poly(D,L-lactide-co-glyceride) Microspheres)

  • 전홍렬;이봉상;권도우;윤미경;전현주;신택환;최영욱
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권3호
    • /
    • pp.199-207
    • /
    • 2002
  • In order to develop a sustained release formulation of bovine somatotropin (BST), which has been used to increase the body weight of oxen or the milk production of dairy cows, poly(D,L-lactide-co-glyceride)(PLGA) microspheres were made by W/O/W multiple emulsification method and solvent extraction method. Physical properties including particle size, drug entrapment, drug release, protein denaturation, and in vivo body weight increase in rats were characterized. The size of the microspheres was increased as the molecular weight of PLGA increased. When Span 65 and stearic acid during preparation were added, the size was decreased but the amount of surface protein was increased, resulting in a high loading efficiency, with fast release of BST from the microspheres. Aggregation or fragmentation of BST by SDS-PAGE during microsphere preparation and drug release study was not observed. Body weight of Sprague-Dawley's male rats was significantly increased after subcutaneous administrations of BST-loaded PLGA microspheres. There was a good correlation between in vivo weight gain and in vitro release rate of microspheres. PLGA microspheres with a high surface protein ratio could be a good candidate for the sustained delivery of BST.

리파아제가 함입된 락타이드-글리콜라이드 공중합체 나노입자의 제조 및 특성 (Formulation and Characterization of Lipase Loaded Poly(D,L - lactide-co-glycolide) Nanoparticles)

  • 김범수;ZEROUAL Y;이강민
    • 폴리머
    • /
    • 제31권1호
    • /
    • pp.20-24
    • /
    • 2007
  • 제조과정에서 단백질 약물의 생물학적 활성의 보존은 약물의 성공적인 전달에 있어 여전히 중요한 과제이다. 이중에멀션 유기용매 증발법을 사용하여 나노입자를 제조하였고, 입자의 형태, 크기, 함입률 그리고 방출속도와 방출되는 효소의 활성을 살펴보았다. 입자의 크기는 고분자인 락타이드 글리콜라이드 공중합체의 농도가 증가할수록 커졌으며, 유화제의 농도에는 큰 차이가 없었으나, 4% PVA의 사용에서 가장 좁은 입자분포를 얻을 수 있었다. 최적의 조건에서 72.6%의 단백질 함입률과 $198.3{\pm}13.8 nm$ 크기의 나노입자를 얻었다. 입자로부터 효소의 방출은 첫 방출시기에 매우 빠르게 일어났으며 12일 내에 83%가 방출되었다. 이에 따른 방출되는 효소의 활성은 6일째까지 증가되었다.

Pichia pastoris: A Recombinant Microfactory for Antibodies and Human Membrane Proteins

  • Goncalves, A.M.;Pedro, A.Q.;Maia, C.;Sousa, F.;Queiroz, J.A.;Passarinha, L.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.587-601
    • /
    • 2013
  • During the last few decades, it has become evident that the compatibility of the yeast biochemical environment with the ability to process and translate the RNA transcript, along with its capacity to modify a translated protein, are relevant requirements for selecting this host cell for protein expression in several pharmaceutical and clinical applications. In particular, Pichia pastoris is used as an industrial host for recombinant protein and metabolite production, showing a powerful capacity to meet required biomolecular target production levels in high-throughput assays for functional genomics and drug screening. In addition, there is a great advantage to using P. pastoris for protein secretion, even at high molecular weights, since the recovery and purification steps are simplified owing to relatively low levels of endogenous proteins in the extracellular medium. Clearly, no single microexpression system can provide all of the desired properties for human protein production. Moreover, chemical and physical bioprocess parameters, including culture medium formulation, temperature, pH, agitation, aeration rates, induction, and feeding strategies, can highly influence product yield and quality. In order to benefit from the currently available wide range of biosynthesis strategies using P. pastoris, this mini review focuses on the developments and technological fermentation achievements, providing both a comparative and an overall integration analysis. The main aim is to highlight the relevance and versatility of the P. pastoris biosystem to the design of more cost-effective microfactories to meet the increasing demands for recombinant membrane proteins and clinical antibodies for several therapeutic applications.

Combined EGFR and c-Src Antisense Oligodeoxynucleotides Encapsulated with PAMAM Denderimers Inhibit HT-29 Colon Cancer Cell Proliferation

  • Nourazarian, Ali Reza;Najar, Ahmad Gholamhoseinian;Farajnia, Safar;Khosroushahi, Ahmad Yari;Pashaei-Asl, Roghiyeh;Omidi, Yadollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4751-4756
    • /
    • 2012
  • Colon cancer continues to be one of the most common cancers, and the importance and necessity of new therapies needs to be stressed. The most important proto-oncogen factors for colon cancer appear to be epidermal growth factor receptor, EGFR, and c-Src with high expression and activity leading to tumor growth and ultimately to colon cancer progression. Application of c-Src and EGFR antisense agents simultaneously should theoretically therefore have major benefit. In the present study, anti-EGFR and c-Src specific antisense oligodeoxynucleotides were combined in a formulation using PAMAM dendrimers as a carrier. Nano drug entry into cells was confirmed by flow cytometry and fluorescence microscopy imaging and real time PCR showed gene expression of c-Src and EGFR, as well as downstream STAT5 and MAPK-1 with the tumor suppressor gene P53 to all be downregulated. EGFR and c-Src protein expression was also reduced when assessed by western blotting techniques. The effect of the antisense oligonucleotide on HT29 cell proliferation was determined by MTT assay, reduction beijng observed after 48 hours. In summary, nano-drug, anti-EGFR and c-Src specific antisense oligodeoxynucleotides were effectively transferred into HT-29 cells and inhibited gene expression in target cells. Based on the results of this study it appears that the use of antisense EGFR and c-Src simultaneously might have a significant effect on colon cancer growth by down regulation of EGFR and its downstream genes.