• Title/Summary/Keyword: Protein display

Search Result 197, Processing Time 0.02 seconds

Hydrophobicity of Amino Acids in Protein Context

  • Cho, Hanul;Chong, Song-Ho;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.103-113
    • /
    • 2014
  • Hydrophobicity is the key concept to understand the role of water in protein folding, protein self-assembly, and protein-ligand interaction. Conventionally, hydrophobicity of amino acids in a protein has been argued based on hydrophobicity scales determined for individual free amino acids, assuming that those scales are unaltered when amino acids are embedded in a protein. Here, we investigate how the hydrophobicity of constituent amino acids depends on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we compute and analyze the hydration free energy - free energy change upon hydration quantifying the hydrophobicity - of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein net charge being positive or negative. We also observe that amino acids in the central ${\beta}$-strand sandwiched by ${\beta}$-sheets display more enhanced hydrophobicity than free amino acids, whereas those in the ${\alpha}$-helix do not clearly show such a tendency. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

Isolation and Characterization of Human scFv Molecules Specific for Recombinant Human Heat Shock Protein (HSP) 70.1

  • Baek, Hyun-jung;Lee, Jae-seon;Seo, Jeong-sun;Cha, Sang-hoon
    • IMMUNE NETWORK
    • /
    • v.4 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • Background: The heat shock proteins (HSPs) play an important role in cellular protection mechanisms against physical or chemical stresses. In this study scFv antibodies specific for human HSP70.1 were isolated from a semi-synthetic human scFv library with the ultimate goal of developing anti-HSP70.1 intracellular antibody (intrabody) that may offer an attractive alternative to gene targeting to study the function of the protein in cells. Methods: A semi-synthetic human scFv display library ($5{\times}10^{8}$ size) was constructed using pCANTAB-5E vector and the selection of the library against bacterially expressed recombinant human HSP70.1 was attempted by panning. Results: Three positive clones specific for recombinant HSP70.1 were identified. All three clones used $V_{H}$ subgroup III. On the other hand, $V_{L}$ of two clones belonged to the kappa light chain subgroup I, but the other utilized $V_{k}$ subgroup IV Interestingly, these scFv molecules specifically reacted to the recombinant HSP70.1, yet failed to recognize native HSP70 induced in U937 human monocytic cells by heat treatment. Conclusion: Our results indicated that affinity selection of an scFv phage display library using recombinant antigens produced in E. coli might not guarantee the isolation of scFv antibody molecules specific for a native form of the antigen. Therefore, the source of target antigens needs to be chosen carefully in order to isolate biofunctional antibody molecules.

Screening of Bacterial Surface Display Anchoring Motif Using Tetrameric β-galactosidase in Bacillus subtilis Spore (Tetrameric β를 이용한 고초균 포자에서의 미생물 표면 발현 모체 선별)

  • Kim, June-Hyung;Pan, Jae-Gu;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.199-205
    • /
    • 2011
  • Using tetrameric ${\beta}$-galactosidase as a model protein, anchoring motives were screened in Bacillus subtilis spore display system. Eleven spore coat proteins were selected considering their expression levels and the location in the spore coat layer. After chromosomal single-copy homologous integration in the amyE site of Bacillus subtilis chromosome, cotE and cotG were chosen as possible spore surface anchoring motives with their higher whole cell ${\beta}$-galactosidase activity. PAGE and Wester blot of extracted fraction of outer layer of purified spore, which express CotE-LacZ or CotG-LacZ fusion verified the existence of exact size of fusion protein and its location in outer coat layer of purified spore. ${\beta}$-galactosidase activity of spore with CotE-LacZ or CotG-LacZ fusion reached its highest value around 16~20 h of culture time in terms of whole cell and purified spore. After intensive spore purification with lysozyme treatment and renografin treatment, spore of BJH135, which expresses CotE-LacZ, retained only 1~2% of its whole cell ${\beta}$-galactosidase activity. Whereas spore of BJH136, which has cotG-lacZ cassette in the chromosome, retained 10~15% of its whole cell ${\beta}$-galactosidase activity, proving minor perturbation of CotG-LacZ, when incorporated in the spore coat layer of Bacillus subtilis compared to CotE-LacZ. Usage of Bacillus subtilis WB700, of which 7 proteases are knocked-out and thereby resulting in 99.7% decrease in protease activity of the host, did not prevent the proteolytic degradation of spore surface expressed CotG-LacZ fusion protein.

Surface Display of Heme- and Diflavin-Containing Cytochrome P450 BM3 in Escherichia coli: A Whole-Cell Biocatalyst for Oxidation

  • Yim, Sung-Kun;Kim, Dong-Hyun;Jung, Heung-Chae;Pan, Jae-Gu;Kang, Hyung-Sik;Ahn, Tae-Ho;Yun, Chul-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.712-717
    • /
    • 2010
  • Cytochrome P450 enzymes (P450s) are involved in the synthesis of a wide variety of valuable products and in the degradation of numerous toxic compounds. The P450 BM3 (CYP102A1) from Bacillus megaterium was the first P450 discovered to be fused to its redox partner, a mammalian-like diflavin reductase. Here, we report the development of a whole-cell biocatalyst using ice-nucleation protein (Inp) from Pseudomonas syringae to display a hemeand diflavin-containing oxidoreductase, P450 BM3 (a single, 119-kDa polypeptide with domains of both an oxygenase and a reductase) on the surface of Escherichia coli. The surface localization and functionality of the fusion protein containing P450 BM3 were verified by flow cytometry and measurement of enzymatic activities. The results of this study comprise the first report of microbial cell-surface display of a heme- and diflavin-containing enzyme. This system should allow us to select and develop oxidoreductases containing heme and/or flavins into practically useful whole-cell biocatalysts for extensive biotechnological applications, including selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, live vaccine development, and biochip development.

Cell Surface Display of Poly(3-hydroxybutyrate) Depolymerase and its Application

  • Lee, Seung Hwan;Lee, Sang Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.244-247
    • /
    • 2020
  • We have expressed extracellular poly(3-hydroxybutyrate) (PHB) depolymerase of Ralstonia pickettii T1 on the Escherichia coli surface using Pseudomonas OprF protein as a fusion partner by C-terminal deletion-fusion strategy. Surface display of depolymerase was confirmed by flow cytometry, immunofluorescence microscopy and whole cell hydrolase activity. For the application, depolymerase was used as an immobilized catalyst of enantioselective hydrolysis reaction for the first time. After 48 h, (R)-methyl mandelate was completely hydrolyzed, and (S)-mandelic acid was produced with over 99% enantiomeric excess. Our findings suggest that surface displayed depolymerase on E. coli can be used as an enantioselective biocatalyst.

Translocation of Seed Storage Proteins into Microsomes Isoalted from Rice Endosperm Cells

  • Kim, Woo Taek
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.293-299
    • /
    • 1994
  • Developing rice endosperm cells display two morphologically distinct rough endoplasmic reticulum (ER) membranes, the cisternae ER (C-ER) and theprotein body ER (PB-ER), the latter delimiting the prolamine protein bodies. We (Li et al., 1993) have recently shown that the storage protein mRNAs are not randomly distributed on these ER types; the C-ER is enriched for glutelin mRNAs, whereas the PB-ER harbors predominantly prolamine transcripts. To address whether these ER types have differnet capacities to translate these mRNAs and translocate their proteins into the lumen, a microsomal fraction enriched in C-ER vesicles was prepared from devleoping rice seeds. When present in an in vitro translatin system, the microsomes were able to proteolytically remove the signal peptide and internalize both preproglutelin and preprolamine within the microsomal vesicles. Of the two species, preprolamine was more effectively translocated and processed. These results suggest that the C-ER has the capacity to recognize and bind both storage protein mRNAs during protein synthesis. Moreover, efficient translocation and processing of glutelin requires additional factors that are deficient or absent in the in vitro system.

  • PDF

Yeast Surface Display of Capsid Protein VP7 of Grass Carp Reovirus: Fundamental Investigation for the Development of Vaccine Against Hemorrhagic Disease

  • Luo, Shaoxiang;Yan, Liming;Zhang, Xiaohua;Yuan, Li;Fang, Qin;Zhang, Yong-An;Dai, Heping
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2135-2145
    • /
    • 2015
  • VP7, an outer capsid protein of grass carp reovirus (GCRV), was expressed and displayed on the surface of Saccharomyces cerevisiae for developing an efficient vaccine against hemorrhagic disease of grass carp. The result of flow cytometry analysis indicated that protein VP7 could be displayed on the surface of yeast cells after inducing with galactose. The expression of VP7 was confirmed by western blot analysis and further visualized with confocal microscopy. The specific antibodies against VP7 generated from mice were detectable from all immune groups except the control group, which was immunized with untransformed yeast cells. The displaying VP7 on glycosylation-deficient strain EBYΔMnn9 was detected to induce a relatively low level of specific antibody amongst the three strains. However, the antiserum of EBYΔM9-VP7 showed relative high capacity to neutralize GCRV. Further neutralization testing assays indicated that the neutralizing ability of antiserum of the EBYΔM9-VP7 group appeared concentration dependent, and could be up to 66.7% when the antiserum was diluted to 1:50. This result indicates that appropriate gene modification of glycosylation in a yeast strain has essential effect on the immunogenicity of a yeast-based vaccine.

Identification of Differentially Displayed Genes of a Pseudomonas Resistant Soybean (Glycine max)

  • Kang, Sang-Gu;Cha, Hyeon-Wook;Chang, Moo-Dng;Park, Eui-Ho
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.239-247
    • /
    • 2003
  • In Korea, a local soybean (Glycine max) genotype 56l. was found to be strongly resistant to a virulent bacterial strain of a Pseudomonas sp. SN239. Specific genes involved in the resistance of the soybean genotype 561 were identified and the pattern of gene expression against the Pseudomonas infection was analyzed using differential-display reverse transcription PCR (DDRT-PCR). More than 126 cDNA fragments representing mRNAs were induced within 48 hours of bacteria inoculation. Among them, 28 cDNA fragments were cloned and sequenced. Twelve differentially displayed clones with open reading frames had unknown functions. Sixteen selected cDNA clones were homologous to known genes of other organisms. Some of the identified cDNAs were pathogenesis-related (PR) genes and PR-like genes. These cDNAs included a putative calmodulin-binding protein; an endo-l,3-1,4-$\bate$-D-glucanase; a $\bate$-1,3-endoglucanase; a $\bate$-1,3-exoglucanase; a phytochelatin synthetase-like gene; a thiol protease; a cycloartenol synthase; and a putative receptor-like serine/threonine protein kinase. Among them, four genes were found to be putative PR genes induced significantly by the Pseudomonas infection. These included a calmodulin-binding protein gene, a $\bate$-1,3-endoglucanase gene, a receptor-like serine/threonine protein kinase gene, and pS321 (unknown function). These results suggest that the differentially expressed genes may mediate the strong resistance of soybean 561 to the strain SN239 of Pseudomonas sp.

Display of Bacillus macerans Cyclodextrin Glucanotransferase on Cell Surface of Saccharomyces cerevisiae

  • Kim, Kyu-Yong;Kim, Myoun-Dong;Han, Nam-Soo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.411-416
    • /
    • 2002
  • Bacillus macerans cyclodextrin glucanotransferase (CGTase) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein, Aga1p. The surface display of CGTase was confirmed by immunofluorescence microscopy and its enzymatic ability to form ${\alpha}$-cyclodextrin from starch. The maximum surface-display of CGTase was obtained by growing recombinant S. cerevisiae at $20^{\circ}C$ and pH 6.0. S. cerevisiae cells displaying CGTase on their surface consumed glucose and maltose, inhibitory byproducts of the CGTase reaction, to enhance the purity of produced cyclodextrins. Accordingly, the experimental results described herein suggest a possibility of using the recombinant S.cerevisiae anchored with bacterial CGTase on the cell surface as a whole-cell biocatalyst for the production of cyclodextrin.

Production of Cyanocarboxylic Acid by Acidovorax facilis 72W Nitrilase Displayed on the Spore Surface of Bacillus subtilis

  • Zhong, Xia;Yang, Shaomin;Su, Xinying;Shen, Xiaoxia;Zhao, Wen;Chan, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.749-757
    • /
    • 2019
  • Nitrilase is a valuable hydrolase that catalyzes nitriles into carboxylic acid and ammonia. Its applications, however, are severely restricted by the harsh conditions of industrial reaction processes. To solve this problem, a nitrilase from Acidovorax facilis 72W was inserted into an Escherichia coli-Bacillus subtilis shuttle vector for spore surface display. Western blot, enzyme activity measurements and flow cytometric analysis results all indicated a successful spore surface display of the CotB-nit fusion protein. In addition, the optimal catalytic pH value and temperature of the displayed nitrilase were determined to be 7.0 and $50^{\circ}C$, respectively. Moreover, results of reusability tests revealed that 64% of the initial activity of the displayed nitrilase was still retained at the $10^{th}$ cycle. Furthermore, hydrolysis efficiency of upscale production of cyanocarboxylic acid was significantly higher in the displayed nitrilase-treated group than in the free group expressed by E. coli (pET-28a-nit). Generally, the display of A. facilis 72W nitrilase on the spore surface of Bacillus subtilis may be a useful method for immobilization of enzyme and consequent biocatalytic stabilization.