• 제목/요약/키워드: Protein dephosphorylation

검색결과 77건 처리시간 0.047초

Kinetic Study on Dephosphorylation of Myelin Basic Protein by Some Protein Phosphates

  • 황인성;김진한;최명운
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권4호
    • /
    • pp.428-432
    • /
    • 1997
  • The dephosphorylation specificity of protein phosphatase 2A (PP2A), calcineurin (PP2B) and protein phosphatase 2C (PP2C) were studied in vitro using myelin basic protein (MBP) as a model substrate which was fully phosphorylated at multiple sites by protein kinase C (PKC) or cyclic AMP-dependent protein kinase (PKA). In order to determine the site specificity of phosphates in myelin basic protein, the protein was digested with trypsin and the radioactive phosphopeptide fragments were isolated by high performance liquid chromatography (HPLC) on reversed-phase column. Subsequent analysis and/or sequential manual Edman degradation of the purified phosphopeptides revealed that Thr-65 and Ser-115 were most extensively phophorylated by PKA and Ser-55 by PKC. For the dephosphorylation kinetics, the phosphorylated MBP was treated with calcineurin or PP2C with various time intervals and the reaction was terminated by direct tryptic digest. Both Thr-65 and Ser-115 residues were dephosphorylated more rapidly than any other ones by phosphatases. However it can be differentiated further by first-order kinetics that the PP2B dephosphorylated both Thr-65 and Ser-115 with almost same manner, whereas PP2C dephosphorylated somewhat preferentially the Ser-115.

Modulation of Phytotropin Receptors by Fluoride and ATP

  • Nam, Myung-Hee;Kang, Bin-G.
    • BMB Reports
    • /
    • 제28권6호
    • /
    • pp.552-555
    • /
    • 1995
  • Treatment of microsomal vesicles isolated from etiolated Pisum sativum L cv. Alaska epicotyl tissue with agents inhibiting protein dephosphorylation, namely NaF and/or ATP, resulted in increased binding of the phytotropin NPA to the putative auxin efflux carriers localized on the plasma membrane. The phytotropin effect was especially conspicuous if the vesicles were simultaneously treated with Triton X-100. Kinetic analysis of the binding indicated the existance of two distinct sites for NPA, each having different affinities. Increased binding of the phytotropin to the membrane where protein dephosphorylation was inhibited was attributable to the increased ligand affinity of both sites. Treatment of tissue segments with flubride was found to enhance in vivo auxin transport. Implications of covalent modification of the auxin efflux carrier complex for the regulation of membrane transport of auxin molecules are discussed.

  • PDF

인산화된 신경수초 염기성 단백질의 탈인산화 연구: 단백질 탈인산화 효소의 기질 모델 (Dephosphorylation Study of Phosphorylated Myelin Basic Protein: A Model Substrate for Protein Phosphatase)

  • 김진한;최명언
    • 대한화학회지
    • /
    • 제41권4호
    • /
    • pp.205-209
    • /
    • 1997
  • 신경수초 염기성 단백질(MBP)에 대한 탈인산화의 자리 특이성에 대한 연구를 시험관에서 수행하였다. MBP에서 인산화된 자리를 알아내기 위해서 MBP를 단백질 키나제 C로 인산화 시키고 단백질 탈인산화 효소 PP2A로 탈인산화시켰다. 인산화된 MBP는 트립신으로 잘라내어서 역상 HPLC 크로마토그래피로 펩티드 조각들을 분리하였다. 각 조각들을 섬광 계측한 후 일부 펩티드의 아미노산 서열을 결정하였다. 일곱 개의 방사능을 보이는 펩티드 조각이 검출되었으며 두번째 조각($P_2$)의 $Ser^{55}$에 해당하는 아미노산이 인산화 반응에 가장 큰 민감도를 보였다. 그러나 탈인산화는 다섯번째 고작($P_5$)의 인산이 가장 잘 방출되는 것으로 나타났다. 이 결과는 MBP가 단백질 탈인산화 반응에 적절한 기질임을 보여주고 있다.

  • PDF

Protein Phosphatases Involved in Regulating Mitosis: Facts and Hypotheses

  • Kim, Hyun-Soo;Fernandes, Gary;Lee, Chang-Woo
    • Molecules and Cells
    • /
    • 제39권9호
    • /
    • pp.654-662
    • /
    • 2016
  • Almost all eukaryotic proteins are subject to post-translational modifications during mitosis and cell cycle, and in particular, reversible phosphorylation being a key event. The recent use of high-throughput experimental analyses has revealed that more than 70% of all eukaryotic proteins are regulated by phosphorylation; however, the mechanism of dephosphorylation, counteracting phosphorylation, is relatively unknown. Recent discoveries have shown that many of the protein phosphatases are involved in the temporal and spatial control of mitotic events, such as mitotic entry, mitotic spindle assembly, chromosome architecture changes and cohesion, and mitotic exit. This implies that certain phosphatases are tightly regulated for timely dephosphorylation of key mitotic phosphoproteins and are essential for control of various mitotic processes. This review describes the physiological and pathological roles of mitotic phosphatases, as well as the versatile role of various protein phosphatases in several mitotic events.

단백질 인산화에 의해 매개되는 브라시노스테로이드 신호전달 연구의 최근 상황 (Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways)

  • 이유;김수환
    • 생명과학회지
    • /
    • 제22권3호
    • /
    • pp.428-436
    • /
    • 2012
  • 단백질 인산화는 세포의 활동을 조절하는 보편적인 과정이다. 브라시노스테로이드(brassinostreoid)에 의해 매개되는 신호전달은 브라시노스테로이드에 의해 활성화된 세포막상의 protein kinase 로부터 인산화되어 있는 전사인자들을 탈인산화하는 연속적인 인산화/탈인산화 과정이다. 브라시노스테로이드에 의해 매개되는 신호전달의 연구는 인산화에 관여하는 kinase 기질상의 아미노산을 밝히고, 그와 관련된 돌연변이체의 표현형을 알아봄으로써 급속하게 발전하였다. BRI1과 BAK1의 자기인산화(autophosphorylation), 상호인산화(transphosphorylation), 타이로신 인산화(tyrosine phosphorylation)를 밝힘으로써 그들의 조절작용을 식물의 생리학적, 발생학적 과정을 더 이해할 수 있는 장이 열렸다. 브라시노스테로이드에 의한 인산화는 수용체에 의해 매개되는 세포 내 함입(endocytosis)과 그에 뒤따르는 수용체의 파괴현상에서도 볼 수 있다. 인산화/탈인산화 과정에 관련하여 브라시노스테로이드에 의해 매개되는 신호전달은 더 연구할 여지가 많이 남아 있다. 이 총설은 단백질의 인산화/탈인산화 과정을 통한 브라시노스테로이드의 신호전달 연구의 최근 상황을 기술하였다.

Photoinhibition and Recovery of Anacystis nidulans Adapted in Blue-Green Light

  • Young-Nam Hong
    • Journal of Plant Biology
    • /
    • 제38권1호
    • /
    • pp.1-10
    • /
    • 1995
  • Photoinhibition and its recovery of spectrally adapted Anacystis nidulans were studied. Phycocyanin and Chl content and phycocyanin/Chl ratio were increased in cells grown under blue-green light compared with those grown in white light. Photosynthetic activities of white light and blue-green light grown cells were reduced by 50% after 15 min and 10 min of photoinhibitory light treatment (1.2 mmol·m-2s-1), respectively, largely due to the decline of PSII activities. However, their activities were recovered fully after 30 min incubation under weak light. Treatment of rifampicin and chloramphenicol magnified the photoinhibitory effects and suppressed the recovery with disappearance of susceptibility to photoinhibition and delayed the recovery process, indicating no significant differences in phosphorylation, dephosphorylation and protease activity between two cells. Therefore, it is suggested that the increased sensitivity of blue-green adapted cells might be attributed to the decline of protein synthesis, and phosphorylation-dephosphorylation of protein and protease activity might be involved in the recovery process.

  • PDF

Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway

  • Park, Seong-Min;Seo, Eun-Hye;Bae, Dong-Hyuck;Kim, Sung Soo;Kim, Jina;Lin, Weiwei;Kim, Kyung-Hee;Park, Jong Bae;Kim, Yong Sung;Yin, Jinlong;Kim, Seon-Young
    • Molecules and Cells
    • /
    • 제42권8호
    • /
    • pp.604-616
    • /
    • 2019
  • Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

  • Jiao, Zhou-Yang;Wu, Jing;Liu, Chao;Wen, Bing;Zhao, Wen-Zeng;Du, Xin-Ling
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.552-557
    • /
    • 2014
  • The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and ${\beta}$-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and ${\beta}$-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase $C{\alpha}$ ($PKC{\alpha}$). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation.

Regulation of Two Soluble Forms of Brain Glutamate Dehydrogenase Isoproteins by Protein Kinases

  • 이종원;최수영;조성우
    • Animal cells and systems
    • /
    • 제2권2호
    • /
    • pp.223-227
    • /
    • 1998
  • We isolated two soluble forms of glutamate dehydrogenase isoproteins, GDH I and GDH II, from bovine brain. The regulation of GDH I and GDH II by phosphorylation and dephosphorylation has been examined in various conditions. There were dose- and time- dependent activation of the GDH isoproteins when phosphorylated by cAMP-dependent protein kinase. The phosphorylated GDH had 1.1 mol of covalently bound phosphate/mol of subunit and a 2-fold increased specific activity. The phosphorylated amino acid was identified as serine. When treated with alkaline phosphatase, the activities of the phosphorylated GDH isoproteins were reduced in dose and time dependent manner and returned to those of unphosphorylated enzymes. There were no significant differences between GDH I and GDH II in their sensitivities to the action of phosphorylation and dephosphorylation demonstrating that the microenvironmental structures of the phosphorylation site in GDH isoproteins are similar to each other, These results results suggest that the inter-conversion between less active form of brain GDH isoproteins and more active form is regulated by phosphorylation through cAMP-dependent protein kineses.

  • PDF