• 제목/요약/키워드: Protein complex

검색결과 1,459건 처리시간 0.027초

Translation initiation mediated by nuclear cap-binding protein complex

  • Ryu, Incheol;Kim, Yoon Ki
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.186-193
    • /
    • 2017
  • In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap- dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation.

c-Cbl Acts as an E3 Ligase Against DDA3 for Spindle Dynamics and Centriole Duplication during Mitosis

  • Gwon, Dasom;Hong, Jihee;Jang, Chang-Young
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.840-849
    • /
    • 2019
  • The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.

Chlorella 세포에서의 $^{32}P$-인산의 단백질 및 다른 질소화합물로의 전환 (Incorporation of phosphate into protein and other nitrogenous compounds in Chlorella cells)

  • Lee, Yung-nok
    • 미생물학회지
    • /
    • 제5권2호
    • /
    • pp.61-68
    • /
    • 1967
  • In the process of the incorporation of orthophsphate into protein and other cell constituents, the role of inorganic polyphosphate and RNA-polyphosphate complex and the correlation between them were pursued by analyzing the contents of $^{32}P$ and total P in various fractions of Chlorella cells, which had been uniformly labeled with $^{32}P$ before the inoculation in a normal "cold" medium or P-free medium during the culture. The effects of ionizing radiation and various micronutritional-element deficiencies on the phosphate incorporation into, and biosynthesis of, protein and other introgenus compounds in the cells were also observed. When the uniformly $^{32}P$-labeled algae were grown in a normal "cold" medium the contents of $^{32}$ P in the fractions of protein, DNA and RNA-polyphosphate complex increased, but those in the fraction of acid-insoluble polyphosphate decreased. On the other hand, amount of $^{32}P$in the fraction of RNA was almost unchanged in spite of rapid increase of the total P. In the growing period of $^{32}P$-labeled algae in a P-free medium, amounts of $^{32}P$ in the fractions of DNA, protein and lipid increased, while those in the fractions of RNA-polyphosphate and inorganic polyphosphates decreased. When the algal cells were irradiated with about 70, 000r of gamma-rays before the inoculation in the medium, amounts of phosphate in the fractions of DNA, RNA, nucleotides and protein decreased during the culture, compared with those of the control. However, the phosphate content in the fraction of acid-insoluble polyphosphate of the irradiated cells increased than those of the control. In the growing period of the algae in a Mo-free, medium, amounts of acid-soluble total phosphate and nucleotides of the cells increased, while the amounts of residual protein and RNA decresed compared with those of the normal cells. Amounts of alkali-labile protein and phospholipid of the cells grown in a B-free medium decreased, whereas amount of phosphate in acid-soluble fraction increased compared with the control. In general, the contents of protein and RNA in each microelement deficient cells decreased more or less, compared with those in the normal cells.in the normal cells.

  • PDF

Analysis of Double Stranded DNA-dependent Activities of Deinococcus radiodurans RecA Protein

  • Kim, Jong-Il
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.508-514
    • /
    • 2006
  • In this study, the double-stranded DNA-dependent activities of Deinococcus radiodurans RecA protein (Dr RecA) were characterized. The interactions of the Dr RecA protein with double-stranded DNA were determined, especially dsDNA-dependent ATP hydrolysis by the Dr RecA protein and the DNA strand exchange reaction, in which multiple branch points exist on a single RecA protein-DNA complex. A nucleotide cofactor (ATP or dATP ) was required for the Dr RecA protein binding to duplex DNA. In the presence of dATP, the nucleation step in the binding process occurred more rapidly than in the presence of ATP. Salts inhibited the binding of the Dr RecA protein to double-stranded DNA. Double-stranded DNA-dependent ATPase activities showed a different sensitivity to anion species. Glutamate had only a minimal effect on the double-stranded DNA-dependent ATPase activities, up to a concentration of 0.7 M. In the competition experiment for Dr RecA protein binding, the Dr RecA protein manifested a higher affinity to double-stranded DNA than was observed for single-stranded DNA.

Structural Aspects of GPCR-G Protein Coupling

  • Chung, Ka Young
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.149-155
    • /
    • 2013
  • G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Nonspecific Association of a 17 kDa Isoform of the Myelin Basic Protein with the Postsynaptic Density Fraction

  • Moon, Il-Soo
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.276-278
    • /
    • 2000
  • The postsynaptic density (PSD), a large protein complex beneath the postsynaptic membrane, is notorious for its 'stickiness'. In order to understand the molecular composition of the PSD fraction, a 17 kDa protein band was isolated by electroelution from SDS-geis, and its partial amino acid sequence was determined from HPLC-purified tryptic peptides of the protein. Surprisingly, the amino acid sequence was identical to that of the previously reported 17 kDa isoform of the myelin basic protein (MBP), an essential protein in CNS myelin formation. Since the protein band represented ~2% of the total proteins in the 1 % n-octyl glucoside-insoluble PSD fraction, these results indicate that a significant amount of the 17 kDa isoform of MBP is tightly associated with the PSD during preparation of the PSD fraction.

  • PDF

A Challenging Study to Identify Target Proteins by a Proteomics Approach and Their Validation by Raising Polyclonal Antibody

  • Jeong, Da-Woon;Park, Beom-Young;Kim, Jin-Hyoung;Hwang, In-Ho
    • 한국축산식품학회지
    • /
    • 제31권4호
    • /
    • pp.506-512
    • /
    • 2011
  • This study was conducted to validate the theoretical feasibility of a technique to identify biomarkers in Korean native black pig (KNP) and a commercial Landrace breed. Using two-dimensional electrophoresis, we found six proteins (NADH dehydrogenase Fe-S protein 1, an unnamed protein product, similar to T-complex protein 1, annexin V = CaBP33 isoform, fatty acid-binding protein, and catechol O-methyltransferase), which appeared in KNP alone. We raised polyclonal antibodies (used as the primary antibody) for Western blotting to confirm the characteristics of the six KNP proteins. As a result, catechol O-methyltransferase, annexin V = CaBP33 isoform, and the unnamed protein product presented thicker bands in KNP than those in Landrace. Moreover, catechol O-methyltransferase was shown to be more feasible as a biomarker for KNP. However, cross-reactivity was observed with the polyclonal antibodies for KNP and the other three proteins (NADH dehydrogenase, a protein similar to T-complex protein 1, and fatty acid-binding protein). This study only showed limited results from a limited number of animals; however, our research suggests possibilities for future studies.

Phosphorylation of $Ser^{246}$ Residue in Integrin-linked Kinase 1 by Serum- and Glucocorticoid-induced Kinase 1 is Required to Form a Protein-protein Complex with 14-3-3

  • Chun, Jae-Sun;Kang, Sang-Sun
    • Animal cells and systems
    • /
    • 제9권3호
    • /
    • pp.161-171
    • /
    • 2005
  • Integrin-linked kinase 1 (ILK1) regulates several protein kinases, including PKB/Akt kinase and glycogen synthase kinase ${\beta}$. ILK1 is also involved distinctively in the cell morphological and structural functions by interacting with the components of the extracellular matrix or integrin. According to the information of serum- and glucocorticoid-induced kinase 1 (SGK1) substrate specificity (R-X-R-X-X(S/T)-${\phi};{\phi}$ indicates a hydrophobic amino acid), two putative phosphorylation sites, $Thr^{181}\;and\;Ser^{246}$, were found in ILK1. We showed that ILK1 fusion protein and two fluorescein-labeled ILK1 peptides, $FITC-^{174}RTRPRNGTLN^{183}$ and $FITC-^{239}CPRLRIFSHP^{248}$, were phosphorylated by SGK1 in vitro. We also identified that 14-3-3 ${\theta}\;{\varepsilon}\;and\;{\xi}$, among several 143-3 isotypes $({\beta},\;{\gamma},\;{\varepsilon},\;{\eta},\;{\sigma},\;{\theta},\;{\tau}\;and\;{\xi})$ formed protein complex with ILK1 in COS-1 cells. Furthermore, the phosphorylation of $Ser^{246}$ by SGK1 induced the binding with 14-3-3. It was also demonstrated that 14-3-3-bound ILK1 has reduced kinase activity. Thus, these data suggest that SGK1 phosphorylates $Thr^{181}\;and\;Ser^{246}$ of ILK1 and the phosphorylation of its $Ser^{246}$ makes ILK1 bind to 14-3-3, resulting in the inhibition of ILK1 kinase activity.

간흡충에 감염된 실험쥐 담관 섬유모세포의 미세구조적 변화 (Ultrastructural Change of the Bile Duct Fibroblast at Infected Rat with Clonorchis sinensis)

  • 김수진;민병훈
    • Applied Microscopy
    • /
    • 제34권2호
    • /
    • pp.121-130
    • /
    • 2004
  • 동물의 결합조직에 분포하고 있는 섬유모세포 (fibroblast)는 결합조직을 구성하는 세포의 한 종류로서 세포질 돌기들이 잘 발달된 형태적 특징이 있는 것으로 실험쥐 담관의 경우 간흡충 등의 기생충에 의하여 물리, 화학적 상해를 받았을 때 세포변이가 유발될 뿐만 아니라, 담관 암세포로 전이되기도 하는 것으로 알려져 있다. 따라서 저자 등은 실험쥐의 담관이 기생충에 의한 상해를 받았을 때 섬유모세포의 세포 표면과 세포질의 변화를 알아보고자 실험쥐 담관에서 섬유모세포를 분리하여 전자현미경으로 확인하고 다음과 같은 결과를 얻었다. 대조군 실험쥐 담관의 섬유모세포들은 일반적인 형태로 세포돌기, 세포표면 및 세포질을 구성하고 있었으나 간흡충 감염군 실험쥐 담관의 섬유모세포는 미세소관에 의한 세포질 돌기들이 다수 발달하고 다양한 종류의 포낭형 조면소포체 그리고 세포질에 전자밀도가 높은 다양한 액포, 높은 밀도의 리보좀을 포함하는 조면소포체, 다양한 형태의 과립 및 많은 수의 미세섬유가 관찰되는 형태적 변화가 관찰되었다. 간흡충에 감염된 담관의 섬유모세포는 간흡충에 의하여 상해 받은 세포가 물리화학적 자극에 의한 적응으로 단백질 합성이 증가하며 multi-vesicular 형태의 Golgi복합체가 생성되고, 세포질돌기 형성하는 것으로 확인되었다. 세포질에 광범위하게 분포하는 multi-vesicle은 당말단인 sialic acid를 포함하고 세포내에서 세포표면의 미세융모에 이르기까지 이동하는 것으로 확인되었다. 이상의 결과로 간흡충 감염 실험쥐로부터 분리된 섬유모세포는 actin단백으로 구성된 세포돌기가 잘 발달하고, 세포내 조면소포체에서 형성된 단백질이 Golgi복합체에서 당말단인 sialic acid로 전환되어 세포표면에 분포하게 된다. 이는 간흡충 감염으로 물리 화학적 자극 자극받은 섬유세포가 미세구조적 변화를 유발하는 것으로 확인되었다.

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.